Search Results
Showing results 1 to 10 of approximately 31.
(refine search)
Working Paper
Which Output Gap Estimates Are Stable in Real Time and Why?
Output gaps that are estimated in real time can differ substantially from those estimated after the fact. We aim to understand the real-time instability of output gap estimates by comparing a suite of reduced-form models. We propose a new statistical decomposition and find that including a Okun’s law relationship improves real-time stability by alleviating the end-point problem. Models that include the unemployment rate also produce output gaps with relevant economic content. However, we find that no model of the output gap is clearly superior to the others along each metric we consider.
Journal Article
Economic data—appearances can be deceiving
Working Paper
Forecasting with small macroeconomic VARs in the presence of instabilities
Small-scale VARs are widely used in macroeconomics for forecasting U.S. output, prices, and interest rates. However, recent work suggests these models may exhibit instabilities. As such, a variety of estimation or forecasting methods might be used to improve their forecast accuracy. These include using different observation windows for estimation, intercept correction, time-varying parameters, break dating, Bayesian shrinkage, model averaging, etc. This paper compares the effectiveness of such methods in real time forecasting. We use forecasts from univariate time series models, the Survey of ...
Working Paper
Raiders of the Lost High-Frequency Forecasts: New Data and Evidence on the Efficiency of the Fed's Forecasting
We introduce a new dataset of real gross domestic product (GDP) growth and core personal consumption expenditures (PCE) inflation forecasts produced by the staff of the Board of Governors of the Federal Reserve System. In contrast to the eight Greenbook forecasts a year the staff produces for Federal Open Market Committee (FOMC) meetings, our dataset has roughly weekly forecasts. We use these new data to study whether the staff forecasts efficiently and whether efficiency, or lack thereof, is time-varying. Prespecified regressions of forecast errors on forecast revisions show that the staff's ...
Newsletter
Season’s greetings and seasonal adjustments
Have you every wondered what the term "seasonally adjusted" means in relation to economic data? What does the change of seasons have to do with economics? The January 2009 Newsletter explains the term and shows its effect on economic data.
Working Paper
Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting
Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and "short" data imply a "ragged edge" at both the beginning and the end of regional data sets, ...
Working Paper
Forecasting Economic Activity with Mixed Frequency Bayesian VARs
Mixed frequency Bayesian vector autoregressions (MF-BVARs) allow forecasters to incorporate a large number of mixed frequency indicators into forecasts of economic activity. This paper evaluates the forecast performance of MF-BVARs relative to surveys of professional forecasters and investigates the influence of certain specification choices on this performance. We leverage a novel real-time dataset to conduct an out-of-sample forecasting exercise for U.S. real gross domestic product (GDP). MF-BVARs are shown to provide an attractive alternative to surveys of professional forecasters for ...
Working Paper
Evaluating real-time VAR forecasts with an informative democratic prior
This paper proposes Bayesian forecasting in a vector autoregression using a democratic prior. This prior is chosen to match the predictions of survey respondents. In particular, the unconditional mean for each series in the vector autoregression is centered around long-horizon survey forecasts. Heavy shrinkage toward the democratic prior is found to give good real-time predictions of a range of macroeconomic variables, as these survey projections are good at quickly capturing endpoint-shifts.
Working Paper
Time-varying Uncertainty of the Federal Reserve’s Output Gap Estimate
What is the output gap and when do we know it? A factor stochastic volatility model estimates the common component to forecasts of the output gap produced by the staff of the Federal Reserve, its time-varying volatility, and time-varying, horizon-specific forecast uncertainty. The common factor to these forecasts is highly procyclical, and unexpected increases to the common factor are associated with persistent responses in other macroeconomic variables. However, output gap estimates are very uncertain, even well after the fact. Output gap uncertainty increases around business cycle turning ...
Working Paper
Time-varying Uncertainty of the Federal Reserve’s Output Gap Estimate
A factor stochastic volatility model estimates the common component to estimates of the output gap produced by the staff of the Federal Reserve, its time-varying volatility, and time-varying, horizon-specific forecast uncertainty. Output gap estimates are very uncertain, even well after the fact, especially at business cycle turning points. However, the common component of the output gap estimates is clearly procyclical, and innovations to the common factor produce persistent positive effects on economic activity. Output gaps estimated by the Congressional Budget Office have very similar ...