Search Results
Report
A Simple Diagnostic for Time-Series and Panel-Data Regressions
We introduce a new regression diagnostic, tailored to time-series and panel-data regressions, which characterizes the sensitivity of the OLS estimate to distinct time-series variation at different frequencies. The diagnostic is built on the novel result that the eigenvectors of a random walk asymptotically orthogonalize a wide variety of time-series processes. Our diagnostic is based on leave-one-out OLS estimation on transformed variables using these eigenvectors. We illustrate how our diagnostic allows applied researchers to scrutinize regression results and probe for underlying fragility ...
Report
A Jackknife Variance Estimator for Panel Regressions
We introduce a new jackknife variance estimator for panel-data regressions. Our variance estimator can be motivated as the conventional leave-one-out jackknife variance estimator on a transformed space of the regressors and residuals using orthonormal trigonometric basis functions. We prove the asymptotic validity of our variance estimator and demonstrate desirable finite-sample properties in a series of simulation experiments. We also illustrate how our method can be used for jackknife bias-correction in a variety of time-series settings.