Search Results

SORT BY: PREVIOUS / NEXT
Keywords:mixed frequency OR Mixed frequency 

Working Paper
Reconciled Estimates of Monthly GDP in the US

In the US, income and expenditure-side estimates of GDP (GDPI and GDPE) measure "true" GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDPE, GDPI, unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error ...
Working Papers , Paper 22-01

Working Paper
Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates

Recent decades have seen advances in using econometric methods to produce more timely and higher-frequency estimates of economic activity at the national level, enabling better tracking of the economy in real time. These advances have not generally been replicated at the sub–national level, likely because of the empirical challenges that nowcasting at a regional level presents, notably, the short time series of available data, changes in data frequency over time, and the hierarchical structure of the data. This paper develops a mixed– frequency Bayesian VAR model to address common ...
Working Papers , Paper 22-06

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on tail risk nowcasts of economic activity, measured by GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, classical and Bayesian quantile regressions, quantile MIDAS regressions) and also different methods for data reduction (either the combination of forecasts from smaller models or forecasts from models that incorporate data reduction). The results show that classical and MIDAS quantile regressions perform very well in-sample but not out-of-sample, ...
Working Papers , Paper 20-13

Working Paper
Forecasting Economic Activity with Mixed Frequency Bayesian VARs

Mixed frequency Bayesian vector autoregressions (MF-BVARs) allow forecasters to incorporate a large number of mixed frequency indicators into forecasts of economic activity. This paper evaluates the forecast performance of MF-BVARs relative to surveys of professional forecasters and investigates the influence of certain specification choices on this performance. We leverage a novel real-time dataset to conduct an out-of-sample forecasting exercise for U.S. real gross domestic product (GDP). MF-BVARs are shown to provide an attractive alternative to surveys of professional forecasters for ...
Working Paper Series , Paper WP-2016-5

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, classical and Bayesian quantile regressions, quantile MIDAS regressions) and also different methods for data reduction (either forecasts from models that incorporate data reduction or the combination of forecasts from smaller models). Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically ...
Working Papers , Paper 20-13R

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, as well as classical and Bayesian quantile regressions) and also different methods for data reduction (either forecasts from models that incorporate data reduction or the combination of forecasts from smaller models). Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically improves as time moves ...
Working Papers , Paper 20-13R2

FILTER BY year

FILTER BY Series

FILTER BY Content Type

FILTER BY Author

FILTER BY Jel Classification

C53 5 items

E37 5 items

C32 3 items

E17 3 items

F47 3 items

E01 1 items

show more (2)

FILTER BY Keywords

PREVIOUS / NEXT