Working Paper Revision
Nowcasting Tail Risks to Economic Activity with Many Indicators
Abstract: This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, as well as classical and Bayesian quantile regressions) and also different methods for data reduction (either forecasts from models that incorporate data reduction or the combination of forecasts from smaller models). Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically improves as time moves forward within a quarter, making additional data available, with monthly data more important to accuracy than weekly data. Accuracy also typically improves with the use of financial indicators in addition to a base set of macroeconomic indicators. The better-performing models or methods include the Bayesian regression model with stochastic volatility, Bayesian quantile regression, some approaches to data reduction that make use of factors, and forecast averaging. In contrast, simple quantile regression performs relatively poorly.
Keywords: pandemics; big data; quantile regressions; forecasting; downside risk; mixed frequency;
JEL Classification: C53; E17; E37; F47;
https://doi.org/10.26509/frbc-wp-202013r2
Access Documents
File(s):
File format is text/html
https://doi.org/10.26509/frbc-wp-202013r2
Description: Full Text
Bibliographic Information
Provider: Federal Reserve Bank of Cleveland
Part of Series: Working Papers
Publication Date: 2020-09-22
Number: 20-13R2
Note: The appendix for this paper is a separate pdf.
Related Works
- Working Paper Revision (2020-09-22) : You are here.
- Working Paper Revision (2020-06-30) : Nowcasting Tail Risks to Economic Activity with Many Indicators
- Working Paper Original (2020-05-11) : Nowcasting Tail Risks to Economic Activity with Many Indicators