Search Results

SORT BY: PREVIOUS / NEXT
Keywords:inference 

Working Paper
Local Projections

A central question in applied research is to estimate the effect of an exogenous intervention or shock on an outcome. The intervention can affect the outcome and controls on impact and over time. Moreover, there can be subsequent feedback between outcomes, controls and the intervention. Many of these interactions can be untangled using local projections. This method’s simplicity makes it a convenient and versatile tool in the empiricist’s kit, one that is generalizable to complex settings. This article reviews the state-of-the art for the practitioner, discusses best practices and ...
Working Paper Series , Paper 2024-24

Report
Micro Responses to Macro Shocks

We study panel data regression models when the shocks of interest are aggregate and possibly small relative to idiosyncratic noise. This speaks to a large empirical literature that targets impulse responses via panel local projections. We show how to interpret the estimated coefficients when units have heterogeneous responses and how to obtain valid standard errors and confidence intervals. A simple recipe leads to robust inference: including lags as controls and then clustering at the time level. This strategy is valid under general error dynamics and uniformly over the degree of ...
Staff Reports , Paper 1090

Working Paper
Easy Bootstrap-Like Estimation of Asymptotic Variances

The bootstrap is a convenient tool for calculating standard errors of the parameter estimates of complicated econometric models. Unfortunately, the bootstrap can be very time-consuming. In a recent paper, Honor and Hu (2017), we propose a ?Poor (Wo)man's Bootstrap? based on one-dimensional estimators. In this paper, we propose a modified, simpler method and illustrate its potential for estimating asymptotic variances.
Working Paper Series , Paper WP-2018-11

Working Paper
Simpler Bootstrap Estimation of the Asymptotic Variance of U-statistic Based Estimators

The bootstrap is a popular and useful tool for estimating the asymptotic variance of complicated estimators. Ironically, the fact that the estimators are complicated can make the standard bootstrap computationally burdensome because it requires repeated re-calculation of the estimator. In Honor and Hu (2015), we propose a computationally simpler bootstrap procedure based on repeated re-calculation of one-dimensional estimators. The applicability of that approach is quite general. In this paper, we propose an alternative method which is specific to extremum estimators based on U-statistics. ...
Working Paper Series , Paper WP-2015-7

Working Paper
Mean Group Distributed Lag Estimation of Impulse Response Functions in Large Panels

This paper develops Mean Group Distributed Lag (MGDL) estimation of impulse responses of common shocks in large panels with one or two cross-section dimensions. We derive sufficient conditions for asymptotic normality, and document satisfactory small sample performance using Monte Carlo experiments. Three empirical illustrations showcase the usefulness of MGDL estimators: crude oil price pass-through to U.S. city- and product-level retail prices; retail price effects of U.S. monetary policy shocks; and house price effects of U.S. monetary policy shocks.
Globalization Institute Working Papers , Paper 423

Working Paper
Impulse Response Diagnostics for Priors on Parameters in Structural Vector Autoregressions

Structural impulse response functions may be estimated based on priors about the parameters of the structural VAR presentation. Even when such priors appear seemingly reasonable, they may imply an unintentionally informative prior for the structural impulse responses. Rather than pretending that the posterior of the impulse responses does not depend on this prior, the proposal in this paper is to verify that the prior distribution of the vector of impulse responses of interest is not unintentionally informative. Moreover, if the impulse response prior is intentionally informative, this point ...
Working Papers , Paper 2507

Working Paper
Mean Group Distributed Lag Estimation of Impulse Response Functions in Large Panels

This paper develops Mean Group Distributed Lag (MGDL) estimation of impulse responses in large panels with one or two cross-section dimensions. Sufficient conditions for asymptotic consistency and asymptotic normality are derived, and satisfactory small sample performance is documented using Monte Carlo experiments. MGDL estimators are used to estimate the effects of crude oil price increases on U.S. city- and product-level retail prices.
Globalization Institute Working Papers , Paper 423

Working Paper
Poor (Wo)man’s Bootstrap

The bootstrap is a convenient tool for calculating standard errors of the parameters of complicated econometric models. Unfortunately, the fact that these models are complicated often makes the bootstrap extremely slow or even practically infeasible. This paper proposes an alternative to the bootstrap that relies only on the estimation of one-dimensional parameters. The paper contains no new difficult math. But we believe that it can be useful.
Working Paper Series , Paper WP-2015-1

Working Paper
Bootstrapping out-of-sample predictability tests with real-time data

In this paper we develop a block bootstrap approach to out-of-sample inference when real-time data are used to produce forecasts. In particular, we establish its first-order asymptotic validity for West-type (1996) tests of predictive ability in the presence of regular data revisions. This allows the user to conduct asymptotically valid inference without having to estimate the asymptotic variances derived in Clark and McCracken’s (2009) extension of West (1996) when data are subject to revision. Monte Carlo experiments indicate that the bootstrap can provide satisfactory finite sample size ...
Working Papers , Paper 2023-029

Working Paper
Bootstrapping out-of-sample predictability tests with real-time data

In this paper we develop a block bootstrap approach to out-of-sample inference when real-time data are used to produce forecasts. In particular, we establish its first-order asymptotic validity for West-type (1996) tests of predictive ability in the presence of regular data revisions. This allows the user to conduct asymptotically valid inference without having to estimate the asymptotic variances derived in Clark and McCracken’s (2009) extension of West (1996) when data are subject to revision. Monte Carlo experiments indicate that the bootstrap can provide satisfactory finite sample size ...
Working Papers , Paper 2023-029

FILTER BY year

FILTER BY Content Type

Working Paper 13 items

Report 1 items

FILTER BY Author

FILTER BY Jel Classification

C52 7 items

C12 6 items

C53 6 items

C10 3 items

C18 3 items

C32 3 items

show more (14)

PREVIOUS / NEXT