Search Results
Working Paper
What's the Story? A New Perspective on the Value of Economic Forecasts
We apply textual analysis tools to measure the degree of optimism versus pessimism of the text that describes Federal Reserve Board forecasts published in the Greenbook. The resulting measure of Greenbook text sentiment, ?Tonality,? is found to be strongly correlated, in the intuitive direction, with the Greenbook point forecast for key economic variables such as unemployment and inflation. We then examine whether Tonality has incremental power for predicting unemployment, GDP growth, and inflation up to four quarters ahead. We find it to have significant and substantive predictive power for ...
Working Paper
News versus Sentiment : Predicting Stock Returns from News Stories
This paper uses a dataset of more than 900,000 news stories to test whether news can predict stock returns. We measure sentiment with a proprietary Thomson-Reuters neural network. We find that daily news predicts stock returns for only 1 to 2 days, confirming previous research. Weekly news, however, predicts stock returns for one quarter. Positive news stories increase stock returns quickly, but negative stories have a long delayed reaction. Much of the delayed response to news occurs around the subsequent earnings announcement.
Working Paper
Corporate Disclosure: Facts or Opinions?
A large body of literature documents the link between textual communication (e.g., news articles, earnings calls) and firm fundamentals, either through pre-defined “sentiment” dictionaries or through machine learning approaches. Surprisingly, little is known about why textual communication matters. In this paper, we take a step in that direction by developing a new methodology to automatically classify statements into objective (“facts”) and subjective (“opinions”) and apply it to transcripts of earnings calls. The large scale estimation suggests several novel results: (1) Facts ...
Working Paper
PEAD.txt: Post-Earnings-Announcement Drift Using Text
We construct a new numerical measure of earnings announcement surprises, standardized unexpected earnings call text (SUE.txt), that does not explicitly incorporate the reported earnings value. SUE.txt generates a text-based post-earnings announcement drift (PEAD.txt) larger than the classic PEAD and can be used to create a profitable trading strategy. Leveraging the prediction model underlying SUE.txt, we propose new tools to study the news content of text: paragraph-level SUE.txt and paragraph classification scheme based on the business curriculum. With these tools, we document many ...
Working Paper
Integrating Prediction and Attribution to Classify News
Recent modeling developments have created tradeoffs between attribution-based models, models that rely on causal relationships, and “pure prediction models†such as neural networks. While forecasters have historically favored one technology or the other based on comfort or loyalty to a particular paradigm, in domains with many observations and predictors such as textual analysis, the tradeoffs between attribution and prediction have become too large to ignore. We document these tradeoffs in the context of relabeling 27 million Thomson Reuters news articles published between 1996 ...