Search Results

Showing results 1 to 10 of approximately 10.

(refine search)
SORT BY: PREVIOUS / NEXT
Author:Shin, Minchul 

Journal Article
Tracking U.S. Real GDP Growth During the Pandemic

During this fast-moving pandemic, it's vital that policymakers can rely on real-time estimates of real GDP growth. Jonas Arias and Minchul Shin show us how it's done.
Economic Insights , Volume 5 , Issue 3 , Pages 9-14

Working Paper
Measuring disagreement in probabilistic and density forecasts

In this paper, we introduce and study a class of disagreement measures for probability distribution forecasts based on the Wasserstein metric. We describe a few advantageous properties of this measure of disagreement between forecasters. After describing alternatives to our proposal, we use examples to compare these measures to one another in closed form. We provide two empirical illustrations. The first application uses our measure to gauge disagreement among professional forecasters about output growth and inflation rate in the Eurozone. The second application employs our measure to gauge ...
Working Papers , Paper 21-03

Working Paper
Measuring International Uncertainty : The Case of Korea

We leverage a data rich environment to construct and study a measure of macroeconomic uncertainty for the Korean economy. We provide several stylized facts about uncertainty in Korea from 1991M10-2016M5. We compare and contrast this measure of uncertainty with two other popular uncertainty proxies, financial and policy uncertainty proxies, as well as the U.S. measure constructed by Jurado et. al. (2015).
Finance and Economics Discussion Series , Paper 2017-066

Working Paper
Probability Forecast Combination via Entropy Regularized Wasserstein Distance

We propose probability and density forecast combination methods that are defined using the entropy regularized Wasserstein distance. First, we provide a theoretical characterization of the combined density forecast based on the regularized Wasserstein distance under the Gaus-sian assumption. Second, we show how this type of regularization can improve the predictive power of the resulting combined density. Third, we provide a method for choosing the tuning parameter that governs the strength of regularization. Lastly, we apply our proposed method to the U.S. inflation rate density forecasting, ...
Working Papers , Paper 20-31/R

Working Paper
A New Approach to Identifying the Real Effects of Uncertainty Shocks

This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the uncertainty shocks we analyze are estimated directly from macroeconomic data so they are associated with changes in the volatility of the shocks hitting the macroeconomy. Second, we advance a new approach to identify uncertainty shocks by placing limited economic restrictions on the first and second ...
Finance and Economics Discussion Series , Paper 2016-040

Working Paper
On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates

We propose methods for constructing regularized mixtures of density forecasts. We explore a variety of objectives and regularization penalties, and we use them in a substantive exploration of Eurozone inflation and real interest rate density forecasts. All individual inflation forecasters (even the ex post best forecaster) are outperformed by our regularized mixtures. From the Great Recession onward, the optimal regularization tends to move density forecasts’ probability mass from the centers to the tails, correcting for overconfidence.
Working Papers , Paper 21-06

Working Paper
Does Realized Volatility Help Bond Yield Density Prediction?

We suggest using "realized volatility" as a volatility proxy to aid in model-based multivariate bond yield density forecasting. To do so, we develop a general estimation approach to incorporate volatility proxy information into dynamic factor models with stochastic volatility. The resulting model parameter estimates are highly efficient, which one hopes would translate into superior predictive performance. We explore this conjecture in the context of density prediction of U.S. bond yields by incorporating realized volatility into a dynamic Nelson-Siegel (DNS) model with stochastic ...
Finance and Economics Discussion Series , Paper 2015-115

Working Paper
Bayesian Estimation and Comparison of Conditional Moment Models

We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is speci?ed up to a set of conditional moment restrictions. This analysis is based on the nonparametric exponentially tilted empirical likelihood (ETEL) function, which is constructed to satisfy a sequence of unconditional moments, obtained from the conditional moments by an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). The posterior distribution is shown to satisfy the Bernstein-von Mises theorem, subject to a ...
Working Papers , Paper 19-51

Working Paper
DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors

Currently, there is growing interest in dynamic stochastic general equilibrium (DSGE) models that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and substantial additional complexities from non-Gaussian distributions and the incorporation of time-varying volatility. The popular DYNARE software package, which has proved useful for small and medium-scale models is, however, not capable of handling such models, thus inhibiting the formulation and estimation of more re-alistic DSGE models. A primary goal of this paper is to ...
Working Papers , Paper 21-02

Working Paper
High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction∗

Working Papers , Paper 20-35

FILTER BY year

FILTER BY Content Type

FILTER BY Author

FILTER BY Jel Classification

C11 5 items

C32 4 items

E37 3 items

C15 2 items

C5 2 items

E32 2 items

show more (10)

FILTER BY Keywords

PREVIOUS / NEXT