Search Results
Showing results 1 to 10 of approximately 17.
(refine search)
Working Paper
On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates
We propose methods for constructing regularized mixtures of density forecasts. We explore a variety of objectives and regularization penalties, and we use them in a substantive exploration of Eurozone inflation and real interest rate density forecasts. All individual inflation forecasters (even the ex post best forecaster) are outperformed by our regularized mixtures. From the Great Recession onward, the optimal regularization tends to move density forecasts’ probability mass from the centers to the tails, correcting for overconfidence.
Working Paper
Does Realized Volatility Help Bond Yield Density Prediction?
We suggest using "realized volatility" as a volatility proxy to aid in model-based multivariate bond yield density forecasting. To do so, we develop a general estimation approach to incorporate volatility proxy information into dynamic factor models with stochastic volatility. The resulting model parameter estimates are highly efficient, which one hopes would translate into superior predictive performance. We explore this conjecture in the context of density prediction of U.S. bond yields by incorporating realized volatility into a dynamic Nelson-Siegel (DNS) model with stochastic ...
Working Paper
The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes
We assess the causal impact of epidemic-induced lockdowns on health and macroeconomic outcomes and measure the trade-off between containing the spread of an epidemic and economic activity. To do so, we estimate an epidemiological model with time-varying parameters and use its output as information for estimating SVARs and LPs that quantify the causal effects of nonpharmaceutical policy interventions. We apply our approach to Belgian data for the COVID-19 epidemic during 2020. We find that additional government mandated mobility curtailments would have reduced deaths at a very small cost in ...
Working Paper
Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs
We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely on a Markov chain Monte Carlo to sample from the posterior distribution. We show how to use the posterior simulation outputs as inputs for exercises in causality assessment. We apply our approach to Belgian data for the COVID-19 epidemic during 2020. Our estimated time-varying-parameters SIRD model ...
Working Paper
Inference Based On Time-Varying SVARs Identified with Time Restrictions
We propose an approach for Bayesian inference in time-varying structural vector autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach is a class of rotation-invariant time-varying SVARs in which the prior and posterior densities of any sequence of structural parameters belonging to the class are invariant to orthogonal transformations of the sequence. Our methodology is new to the literature. In contrast to existing algorithms for inference based on sign restrictions, our algorithm is the first to draw from a uniform distribution over the sequences of ...
Working Paper
A New Approach to Identifying the Real Effects of Uncertainty Shocks
This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the uncertainty shocks we analyze are estimated directly from macroeconomic data so they are associated with changes in the volatility of the shocks hitting the macroeconomy. Second, we advance a new approach to identify uncertainty shocks by placing limited economic restrictions on the first and second ...
Journal Article
Tracking U.S. Real GDP Growth During the Pandemic
During this fast-moving pandemic, it's vital that policymakers can rely on real-time estimates of real GDP growth. Jonas Arias and Minchul Shin show us how it's done.
Working Paper
Bayesian Estimation and Comparison of Conditional Moment Models
We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is speci?ed up to a set of conditional moment restrictions. This analysis is based on the nonparametric exponentially tilted empirical likelihood (ETEL) function, which is constructed to satisfy a sequence of unconditional moments, obtained from the conditional moments by an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). The posterior distribution is shown to satisfy the Bernstein-von Mises theorem, subject to a ...
Working Paper
Probability Forecast Combination via Entropy Regularized Wasserstein Distance
We propose probability and density forecast combination methods that are defined using the entropy regularized Wasserstein distance. First, we provide a theoretical characterization of the combined density forecast based on the regularized Wasserstein distance under the Gaus-sian assumption. Second, we show how this type of regularization can improve the predictive power of the resulting combined density. Third, we provide a method for choosing the tuning parameter that governs the strength of regularization. Lastly, we apply our proposed method to the U.S. inflation rate density forecasting, ...