Working Paper
A New Approach to Identifying the Real Effects of Uncertainty Shocks
Abstract: This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the uncertainty shocks we analyze are estimated directly from macroeconomic data so they are associated with changes in the volatility of the shocks hitting the macroeconomy. Second, we advance a new approach to identify uncertainty shocks by placing limited economic restrictions on the first and second moment responses to these shocks. Third, we consider an extension of the sign restrictions methodology of Uhlig (2005) to uncertainty shocks. To illustrate our methods, we ask what is the role of financial markets in transmitting uncertainty shocks to the real economy? We find evidence that an increase in uncertainty leads to a decline in industrial production only if associated with a deterioration in financial conditions.
Keywords: Multivariate stochastic volatility; Uncertainty; Vector autoregression; Volatility-in-mean; Wishart process;
JEL Classification: C11; C32; E32;
https://doi.org/10.17016/FEDS.2016.040
Access Documents
File(s): File format is application/pdf http://www.federalreserve.gov/econresdata/feds/2016/files/2016040pap.pdf
Authors
Bibliographic Information
Provider: Board of Governors of the Federal Reserve System (U.S.)
Part of Series: Finance and Economics Discussion Series
Publication Date: 2016-04-25
Number: 2016-040
Pages: 55 pages