Search Results

SORT BY: PREVIOUS / NEXT
Keywords:Nowcasting 

Working Paper
Nowcasting Indonesia

We produce predictions of the current state of the Indonesian economy by estimating a dynamic factor model on a dataset of eleven indicators (also followed closely by market operators) over the time period 2002 to 2014. Besides the standard difficulties associated with constructing timely indicators of current economic conditions, Indonesia presents additional challenges typical to emerging market economies where data are often scant and unreliable. By means of a pseudo-real-time forecasting exercise we show that our model outperforms univariate benchmarks, and it does comparably with ...
Finance and Economics Discussion Series , Paper 2015-100

Working Paper
Forecasting Economic Activity with Mixed Frequency Bayesian VARs

Mixed frequency Bayesian vector autoregressions (MF-BVARs) allow forecasters to incorporate a large number of mixed frequency indicators into forecasts of economic activity. This paper evaluates the forecast performance of MF-BVARs relative to surveys of professional forecasters and investigates the influence of certain specification choices on this performance. We leverage a novel real-time dataset to conduct an out-of-sample forecasting exercise for U.S. real gross domestic product (GDP). MF-BVARs are shown to provide an attractive alternative to surveys of professional forecasters for ...
Working Paper Series , Paper WP-2016-5

Working Paper
Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting

Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and "short" data imply a "ragged edge" at both the beginning and the end of regional data sets, ...
Working Papers , Paper 23-09

Working Paper
Real-Time Forecasting and Scenario Analysis using a Large Mixed-Frequency Bayesian VAR

We use a mixed-frequency vector autoregression to obtain intraquarter point and density forecasts as new, high frequency information becomes available. This model, delineated in Ghysels (2016), is specified at the lowest sampling frequency; high frequency observations are treated as different economic series occurring at the low frequency. As this type of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate parameter proliferation. We obtain high-frequency updates to forecasts by treating new data releases as conditioning information. The same ...
Working Papers , Paper 2015-030

Discussion Paper
Exploring the use of anonymized consumer credit information to estimate economic conditions: an application of big data

The emergence of high-frequency administrative data and other big data offers an opportunity for improvements to economic forecasting models. This paper considers the potential advantages and limitations of using information contained in anonymized consumer credit reports for improving estimates of current and future economic conditions for various geographic areas and demographic markets. Aggregate consumer credit information is found to be correlated with macroeconomic variables such as gross domestic product, retail sales, and employment and can serve as leading indicators such that lagged ...
Consumer Finance Institute discussion papers , Paper 15-5

Working Paper
Predicting Benchmarked US State Employment Data in Real Time

US payroll employment data come from a survey and are subject to revisions. While revisions are generally small at the national level, they can be large enough at the state level to alter assessments of current economic conditions. Users must therefore exercise caution in interpreting state employment data until they are “benchmarked” against administrative data 5–16 months after the reference period. This paper develops a state-space model that predicts benchmarked state employment data in real time. The model has two distinct features: 1) an explicit model of the data revision process ...
Working Papers , Paper 2019-037

Working Paper
A Nowcasting Model for Canada: Do U.S. Variables Matter?

We propose a dynamic factor model for nowcasting the growth rate of quarterly real{{p}}Canadian gross domestic product. We show that the proposed model produces more accurate nowcasts than those produced by institutional forecasters, like the Bank of Canada, the The Organisation for Economic Co-operation and Development (OECD), and the survey collected by Bloomberg, which reflects the median forecast of market participants. We show that including U.S. data in a nowcasting model for Canada dramatically improves its predictive accuracy, mainly because of the absence of timely production data ...
Finance and Economics Discussion Series , Paper 2016-036

Working Paper
Lessons from Nowcasting GDP across the World

In economics, we need to forecast the present because reliable and comprehensive measures of the state of the economy are released with a substantial delay and considerable measurement error. Nowcasting exploits timely data to obtain early estimates of the state of the economy and updates these estimates continuously as new macroeconomic data are released. In this chapter, we describe how the framework used to nowcast GDP has evolved and is applied worldwide.
International Finance Discussion Papers , Paper 1385

Working Paper
Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR

We assess point and density forecasts from a mixed-frequency vector autoregression (VAR) to obtain intra-quarter forecasts of output growth as new information becomes available. The econometric model is specified at the lowest sampling frequency; high frequency observations are treated as different economic series occurring at the low frequency. We impose restrictions on the VAR to account explicitly for the temporal ordering of the data releases. Because this type of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate parameter proliferation. The ...
Working Papers , Paper 2015-30

Working Paper
The Importance of Updating: Evidence from a Brazilian Nowcasting Model

How often should we update predictions for economic activity? Gross domestic product is a quarterly variable disseminated usually a couple of months after the end of the quarter, but many other macroeconomic indicators are released with a higher frequency, and financial markets react very strongly to them. However, most of the professional forecasters, including the IMF, the OECD, and most central banks, tend to update their forecasts of economic activity only two to four times a year. The main exception is the Central Bank of Brazil which is responsible for collecting and publishing a daily ...
Finance and Economics Discussion Series , Paper 2014-94

FILTER BY year

FILTER BY Content Type

FILTER BY Author

FILTER BY Jel Classification

C53 11 items

E37 6 items

C32 4 items

C33 3 items

C22 2 items

C52 2 items

show more (8)

FILTER BY Keywords

PREVIOUS / NEXT