Search Results
Working Paper
Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach
Vector autoregressions with Markov-switching parameters (MS-VARs) offer dramatically better data fit than their constant-parameter predecessors. However, computational complications, as well as negative results about the importance of switching in parameters other than shock variances, have caused MS-VARs to see only sparse usage. For our first contribution, we document the effectiveness of Sequential Monte Carlo (SMC) algorithms at estimating MSVAR posteriors. Relative to multi-step, model-specific MCMC routines, SMC has the advantages of being simpler to implement, readily parallelizable, ...
Working Paper
Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting
Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and "short" data imply a "ragged edge" at both the beginning and the end of regional data sets, ...
Briefing
Monetary Policy across Space and Time
Many major macroeconomic events have occurred across multiple countries. This Economic Brief looks at similarities and differences among the euro area, the United Kingdom, and the United States and finds that macroeconomic variables tend to become more interconnected during periods of financial distress. Movements in monetary policy are highly correlated across all three regions. In addition, inflation and unemployment become less responsive to monetary policy shocks over time.
Working Paper
Interpreting Shocks to the Relative Price of Investment with a Two-Sector Model
Consumption and investment comove over the business cycle in response to shocks that permanently move the price of investment. The interpretation of these shocks has relied on standard one-sector models or on models with two or more sectors that can be aggregated. However, the same interpretation continues to go through in models that cannot be aggregated into a standard one-sector model. Furthermore, such a two-sector model with distinct factor input shares across production sectors and commingling of sectoral outputs in the assembly of final consumption and investment goods, in line with ...
Working Paper
National and Regional Housing Vacancy: Insights Using Markov-switching Models
We examine homeowner vacancy rates over time and space using Markov-switching models. Our theoretical analysis extends the Wheaton (1990) search and matching model for housing by incorporating regime-switching behavior and interregional spillovers. Our approach is strongly supported by our empirical results. Estimations, using constant-only as well as Vector Autoregressions, allow us to examine differences in vacancy rates as well as explore the possibility of asymmetries within and across housing markets, depending on the state/regime (e.g., low or high vacancy) of a given housing market. ...
Working Paper
Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach
Vector autoregressions with Markov-switching parameters (MS-VARs) fit the data better than do their constant-parameter predecessors. However, Bayesian inference for MS-VARs with existing algorithms remains challenging. For our first contribution, we show that Sequential Monte Carlo (SMC) estimators accurately estimate Bayesian MS-VAR posteriors. Relative to multi-step, model-specific MCMC routines, SMC has the advantages of generality, parallelizability, and freedom from reliance on particular analytical relationships between prior and likelihood. For our second contribution, we use SMC's ...
Working Paper
Oil Price Elasticities and Oil Price Fluctuations
We study the identification of oil shocks in a structural vector autoregressive (SVAR) model of the oil market. First, we show that the cross-equation restrictions of a SVAR impose a nonlinear relation between the short-run price elasticities of oil supply and oil demand. This relation implies that seemingly plausible restrictions on oil supply elasticity may map into implausible values of the oil demand elasticity, and vice versa. Second, we propose an identification scheme that restricts these elasticities by minimizing the distance between the elasticities allowed by the SVAR and target ...
Working Paper
Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting
Financial data often contain information that is helpful for macroeconomic forecasting, while multistep forecast accuracy also benefits by incorporating good nowcasts of macroeconomic variables. This paper considers the role of nowcasts of financial variables in making conditional forecasts of real and nominal macroeconomic variables using standard quarterly Bayesian vector autoregressions (BVARs). For nowcasting the quarterly value of a variety of financial variables, we document that the average of the available daily data and a daily random walk forecast to fill in the missing days in the ...
Working Paper
Refining Set-Identification in VARs through Independence
Identification in VARs has traditionally mainly relied on second moments. Some researchers have considered using higher moments as well, but there are concerns about the strength of the identification obtained in this way. In this paper, we propose refining existing identification schemes by augmenting sign restrictions with a requirement that rules out shocks whose higher moments significantly depart from independence. This approach does not assume that higher moments help with identification; it is robust to weak identification. In simulations we show that it controls coverage well, in ...
Working Paper
Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility
We develop a sequential Monte Carlo (SMC) algorithm for Bayesian inference in vector autoregressions with stochastic volatility (VAR-SV). The algorithm builds particle approximations to the sequence of the model’s posteriors, adapting the particles from one approximation to the next as the window of available data expands. The parallelizability of the algorithm’s computations allows the adaptations to occur rapidly. Our particular algorithm exploits the ability to marginalize many parameters from the posterior analytically and embeds a known Markov chain Monte Carlo (MCMC) algorithm for ...