Search Results
Working Paper
Forecasting Core Inflation and Its Goods, Housing, and Supercore Components
This paper examines the forecasting efficacy and implications of the recently popular breakdown of core inflation into three components: goods excluding food and energy, services excluding energy and housing, and housing. A comprehensive historical evaluation of the accuracy of point and density forecasts from a range of models and approaches shows that a BVAR with stochastic volatility in aggregate core inflation, its three components, and wage growth is an effective tool for forecasting inflation's components as well as aggregate core inflation. Looking ahead, the model's baseline ...
Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees
We develop multivariate time series models using Bayesian additive regression trees that posit nonlinearities among macroeconomic variables, their lags, and possibly their lagged errors. The error variances can be stable, feature stochastic volatility, or follow a nonparametric specification. We evaluate density and tail forecast performance for a set of US macroeconomic and financial indicators. Our results suggest that the proposed models improve forecast accuracy both overall and in the tails. Another finding is that when allowing for nonlinearities in the conditional mean, ...