Search Results
Working Paper
The Anatomy of Out-of-Sample Forecasting Accuracy
We introduce the performance-based Shapley value (PBSV) to measure the contributions of individual predictors to the out-of-sample loss for time-series forecasting models. Our new metric allows a researcher to anatomize out-of-sample forecasting accuracy, thereby providing valuable information for interpreting time-series forecasting models. The PBSV is model agnostic—so it can be applied to any forecasting model, including "black box" models in machine learning, and it can be used for any loss function. We also develop the TS-Shapley-VI, a version of the conventional Shapley value that ...