Search Results

SORT BY: PREVIOUS / NEXT
Keywords:nonparametric VAR 

Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees

We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a novel nonparametric specification. Estimation is carried out using scalable Markov chain Monte Carlo estimation algorithms for each specification. We evaluate the real-time density and tail forecasting performance of the various models for a set of US macroeconomic and financial indicators. Our ...
Working Papers , Paper 21-08

FILTER BY Bank

FILTER BY Series

FILTER BY Content Type

FILTER BY Jel Classification

C11 1 items

C32 1 items

C53 1 items

FILTER BY Keywords

PREVIOUS / NEXT