Search Results
Working Paper
Machine Learning, the Treasury Yield Curve and Recession Forecasting
We use machine learning methods to examine the power of Treasury term spreads and other financial market and macroeconomic variables to forecast US recessions, vis-à-vis probit regression. In particular we propose a novel strategy for conducting cross-validation on classifiers trained with macro/financial panel data of low frequency and compare the results to those obtained from standard k-folds cross-validation. Consistent with the existing literature we find that, in the time series setting, forecast accuracy estimates derived from k-folds are biased optimistically, and cross-validation ...
Working Paper
Macroeconomic Indicator Forecasting with Deep Neural Networks
Economic policymaking relies upon accurate forecasts of economic conditions. Current methods for unconditional forecasting are dominated by inherently linear models {{p}} that exhibit model dependence and have high data demands. {{p}} We explore deep neural networks as an {{p}} opportunity to improve upon forecast accuracy with limited data and while remaining agnostic as to {{p}} functional form. We focus on predicting civilian unemployment using models based on four different neural network architectures. Each of these models outperforms bench- mark models at short time horizons. One model, ...