Search Results
Working Paper
Labor Market Effects of Credit Constraints: Evidence from a Natural Experiment
We exploit the 1998 and 2003 constitutional amendment in Texas—allowing home equity loans and lines of credit for non-housing purposes—as natural experiments to estimate the effect of easier credit access on the labor market. Using state-level as well as micro data and the synthetic control approach, we find that easier access to housing credit led to a notably lower labor force participation rate between 1998 and 2007. We show that our findings are remarkably robust to improved synthetic control methods based on insights from machine learning. We explore treatment effect heterogeneity ...
Working Paper
Dissecting Idiosyncratic Earnings Risk
This paper examines whether nonlinear and non-Gaussian features of earnings dynamics are caused by hours or hourly wages. Our findings from the Norwegian administrative and survey data are as follows: (i) Nonlinear mean reversion in earnings is driven by the dynamics of hours worked rather than wages since wage dynamics are close to linear, while hours dynamics are nonlinear—negative changes to hours are transitory, while positive changes are persistent. (ii) Large earnings changes are driven equally by hours and wages, whereas small changes are associated mainly with wage shocks. (iii) ...
Working Paper
Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning
This paper considers the problem of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across establishments is highly skewed. To address these difficulties, this paper develops a probabilistic record linkage methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI methodology is applied to link survey respondents in the Health and Retirement Study to their workplaces in the Census Business Register. ...
Working Paper
How People Pay Each Other: Data, Theory, and Calibrations
Using a representative sample of the U.S. adult population, we analyze which payment methods consumers use to pay other consumers (p2p) and how these choices depend on transaction and demographic characteristics. We additionally construct a random matching model of consumers with diverse preferences over the use of different payment methods for p2p payments. The random matching model is calibrated to the share of p2p payments made with cash, paper check, and electronic technologies observed from 2015 to 2019. We find about two thirds of consumers have a first p2p payment preference of cash. ...
Working Paper
Predictive Modeling of Surveyed Property Conditions and Vacancy
Using the results of a comprehensive in-person survey of properties in Cleveland, Ohio, we fit predictive models of vacancy and property conditions. We draw predictor variables from administrative data that is available in most jurisdictions such as deed recordings, tax assessor?s property characteristics, and foreclosure filings. Using logistic regression and machine learning methods, we are able to make reasonably accurate out-of-sample predictions. Our findings indicate that housing professionals could use administrative data and predictive models to identify distressed properties between ...
Working Paper
The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?
Using close to 40 years of textual data from FOMC transcripts and the Federal Reserve staff's Greenbook/Tealbook, we extend Romer and Romer (2008) to test if the FOMC adds information relative to its staff forecasts not via its own quantitative forecasts but via its words. We use methods from natural language processing to extract from both types of document text-based forecasts that capture attentiveness to and sentiment about the macroeconomy. We test whether these text-based forecasts provide value-added in explaining the distribution of outcomes for GDP growth, the unemployment rate, and ...
Working Paper
Sellin' in the Rain: Weather, Climate, and Retail Sales
I apply a novel machine-learning based “weather index” method to daily store- level sales data for a national apparel and sporting goods brand to examine short-run responses to weather and long-run adaptation to climate. I find that even when considering potentially offsetting shifts of sales between outdoor and indoor stores, to the firm's website, or over time, weather has significant persistent effects on sales. This suggests that weather may increase sales volatility as more severe weather shocks be- come more frequent under climate change. Consistent with adaptation to climate, I ...
Working Paper
Alternative Methods for Studying Consumer Payment Choice
Using machine learning techniques applied to consumer diary survey data, the author of this working paper examines methods for studying consumer payment choice. These techniques, especially when paired with regression analyses, provide useful information for understanding and predicting the payment choices consumers make.
Working Paper
Important Factors Determining Fintech Loan Default: Evidence from the LendingClub Consumer Platform
This study examines key default determinants of fintech loans, using loan-level data from the LendingClub consumer platform during 2007–2018. We identify a robust set of contractual loan characteristics, borrower characteristics, and macroeconomic variables that are important in determining default. We find an important role of alternative data in determining loan default, even after controlling for the obvious risk characteristics and the local economic factors. The results are robust to different empirical approaches. We also find that homeownership and occupation are important factors in ...
Working Paper
The Anatomy of Out-of-Sample Forecasting Accuracy
We introduce the performance-based Shapley value (PBSV) to measure the contributions of individual predictors to the out-of-sample loss for time-series forecasting models. Our new metric allows a researcher to anatomize out-of-sample forecasting accuracy, thereby providing valuable information for interpreting time-series forecasting models. The PBSV is model agnostic—so it can be applied to any forecasting model, including "black box" models in machine learning, and it can be used for any loss function. We also develop the TS-Shapley-VI, a version of the conventional Shapley value that ...