Search Results
Working Paper
Shock-Dependent Exchange Rate Pass-Through: Evidence Based on a Narrative Sign Approach
This paper studies shock-dependent exchange rate pass-through for Japan with a Bayesian structural vector autoregression model. We identify the shocks by complementing the traditional sign and zero restrictions with narrative sign restrictions related to the Plaza Accord. We find that the narrative sign restrictions are highly informative, and substantially sharpen and even change the inferences of the structural vector autoregression model originally identified with only the traditional sign and zero restrictions. We show that there is a significant variation in the exchange rate ...
Journal Article
Cutting-Edge Methods Did Not Improve Inflation Forecasting during the COVID-19 Pandemic
Amaze Lusompa and Sai A. Sattiraju investigate whether innovations in time-varying parameter models led to improved inflation forecasting during the pandemic. They find that despite their promise prior to the pandemic, forecasting innovations did not improve the accuracy of inflation forecasts relative to a baseline time-varying parameter model during the pandemic. Their results suggest that forecasters may need to develop a new class of forecasting models, introduce new forecasting variables, or rethink how they forecast to yield more effective inflation forecasts during extreme events.
Working Paper
Forecasting Inflation: Phillips Curve Effects on Services Price Measures
We estimate an empirical model of inflation that exploits a Phillips curve relationship between a measure of unemployment and a subaggregate measure of inflation (services). We generate an aggregate inflation forecast from forecasts of the goods subcomponent separate from the services subcomponent, and compare the aggregated forecast to the leading time-series univariate and standard Phillips curve forecasting models. Our results indicate notable improvements in forecasting accuracy statistics for models that exploit relationships between services inflation and the unemployment rate. In ...
Working Paper
The Usefulness of the Median CPI in Bayesian VARs Used for Macroeconomic Forecasting and Policy
In this paper we investigate the forecasting performance of the median Consumer Price Index (CPI) in a variety of Bayesian vector autoregressions (BVARs) that are often used for monetary policy. Until now, the use of trimmed-mean price statistics in forecasting inflation has often been relegated to simple univariate or Phillips curve approaches, thus limiting their usefulness in applications that require consistent forecasts of multiple macro variables. We find that inclusion of an extreme trimmed-mean measure?the median CPI?improves the forecasts of both core and headline inflation (CPI and ...
Working Paper
Understanding Survey Based Inflation Expectations
Survey based measures of inflation expectations are not informationally efficient yet carry important information about future inflation. This paper explores the economic significance of informational inefficiencies of survey expectations. A model selection algorithm is applied to the inflation expectations of households and professionals using a large panel of macroeconomic data. The expectations of professionals are best described by different indicators than the expectations of households. A forecast experiment finds that it is difficult to exploit informational inefficiencies to improve ...
Working Paper
Forecasting US Inflation Using Bayesian Nonparametric Models
The relationship between inflation and predictors such as unemployment is potentially nonlinear with a strength that varies over time, and prediction errors error may be subject to large, asymmetric shocks. Inspired by these concerns, we develop a model for inflation forecasting that is nonparametric both in the conditional mean and in the error using Gaussian and Dirichlet processes, respectively. We discuss how both these features may be important in producing accurate forecasts of inflation. In a forecasting exercise involving CPI inflation, we find that our approach has substantial ...
Report
Real-time inflation forecasting in a changing world
This paper revisits the accuracy of inflation forecasting using activity and expectations variables. We apply Bayesian-model averaging across different regression specifications selected from a set of potential predictors that includes lagged values of inflation, a host of real activity data, term structure data, nominal data, and surveys. In this model average, we can entertain different channels of structural instability by incorporating stochastic breaks in the regression parameters of each individual specification within this average, allowing for breaks in the error variance of the ...
Working Paper
Trimmed-Mean Inflation Statistics: Just Hit the One in the Middle
This paper reinvestigates the performance of trimmed-mean inflation measures some 20 years since their inception, asking whether there is a particular trimmed-mean measure that dominates the median consumer price index (CPI). Unlike previous research, we evaluate the performance of symmetric and asymmetric trimmed means using a well known equality of prediction test. We find that there is a large swath of trimmed means that have statistically indistinguishable performance. Also, although the swath of statistically similar trims changes slightly over different sample periods, it always ...