Search Results

SORT BY: PREVIOUS / NEXT
Keywords:identification 

Working Paper
Assessing the macroeconomic impact of bank intermediation shocks: a structural approach

We take a structural approach to assessing the empirical importance of shocks to the supply of bank-intermediated credit in affecting macroeconomic fluctuations. First, we develop a theoretical model to show how credit supply shocks can be transmitted into disruptions in the production economy. Second, we use the unique micro-banking data to identify and support the model's key mechanism. Third, we find that the output effect of credit supply shocks is not only economically and statistically significant but also consistent with the vector autogression evidence. Our mode estimation indicates ...
FRB Atlanta Working Paper , Paper 2015-8

Working Paper
Identification Through Sparsity in Factor Models

Factor models are generally subject to a rotational indeterminacy, meaning that individual factors are only identified up to a rotation. In the presence of local factors, which only affect a subset of the outcomes, we show that the implied sparsity of the loading matrix can be used to solve this rotational indeterminacy. We further prove that a rotation criterion based on the 1-norm of the loading matrix can be used to achieve identification even under approximate sparsity in the loading matrix. This enables us to consistently estimate individual factors, and to interpret them as structural ...
Working Papers , Paper 20-25

Working Paper
Assessing International Commonality in Macroeconomic Uncertainty and Its Effects

This paper uses a large vector autoregression to measure international macroeconomic uncertainty and its effects on major economies. We provide evidence of significant commonality in macroeconomic volatility, with one common factor driving strong comovement across economies and variables. We measure uncertainty and its effects with a large model in which the error volatilities feature a factor structure containing time-varying global components and idiosyncratic components. Global uncertainty contemporaneously affects both the levels and volatilities of the included variables. Our new ...
Working Papers , Paper 18-03R

Working Paper
Decomposing the Fiscal Multiplier

Unusual circumstances often coincide with unusual fiscal policy actions. Much attention has been paid to estimates of how fiscal policy affects the macroeconomy, but these are typically average treatment effects. In practice, the fiscal “multiplier” at any point in time depends on the monetary policy response. Using the IMF fiscal consolidations dataset for identification and a new decomposition-based approach, we show how to evaluate these monetary-fiscal effects. In the data, the fiscal multiplier varies considerably with monetary policy: it can be zero, or as large as 2 depending on ...
Working Paper Series , Paper 2020-12

Working Paper
Minimum distance estimation of possibly non-invertible moving average models

This paper considers estimation of moving average (MA) models with non-Gaussian errors. Information in higher-order cumulants allows identification of the parameters without imposing invertibility. By allowing for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model has classical (root-T and asymptotic normal) properties when the moving average root is inside, outside, and on the unit circle. For more general models where the dependence of the cumulants on the model parameters is analytically intractable, we consider simulation-based estimators with two ...
FRB Atlanta Working Paper , Paper 2013-11

Working Paper
When Do State-Dependent Local Projections Work?

Many empirical studies estimate impulse response functions that depend on the state of the economy. Most of these studies rely on a variant of the local projection (LP) approach to estimate the state-dependent impulse response functions. Despite its widespread application, the asymptotic validity of the LP approach to estimating state-dependent impulse responses has not been established to date. We formally derive this result for a structural state-dependent vector autoregressive process. The model only requires the structural shock of interest to be identified. A sufficient condition for the ...
Working Papers , Paper 2205

Working Paper
Sample Selection Models Without Exclusion Restrictions: Parameter Heterogeneity and Partial Identification

This paper studies semiparametric versions of the classical sample selection model (Heckman (1976, 1979)) without exclusion restrictions. We extend the analysis in Honoré and Hu (2020) by allowing for parameter heterogeneity and derive implications of this model. We also consider models that allow for heteroskedasticity and briefly discuss other extensions. The key ideas are illustrated in a simple wage regression for females. We find that the derived implications of a semiparametric version of Heckman's classical sample selection model are consistent with the data for women with no college ...
Working Paper Series , Paper WP 2022-33

Working Paper
Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications

In this paper, we develop algorithms to independently draw from a family of conjugate posterior distributions over the structural parameterization when sign and zero restrictions are used to identify SVARs. We call this family of conjugate posterior distributions normal-generalized-normal. Our algorithms draw from a conjugate uniform-normal-inverse-Wishart posterior over the orthogonal reduced-form parameterization and transform the draws into the structural parameterization; this transformation induces a normal-generalized-normal posterior distribution over the structural parameterization. ...
FRB Atlanta Working Paper , Paper 2014-1

Working Paper
Inference Based on Time-Varying SVARs Identified with Sign Restrictions

We propose an approach for Bayesian inference in time-varying SVARs identified with sign restrictions. The linchpin of our approach is a class of rotation-invariant time-varying SVARs in which the prior and posterior densities of any sequence of structural parameters belonging to the class are invariant to orthogonal transformations of the sequence. Our methodology is new to the literature. In contrast to existing algorithms for inference based on sign restrictions, our algorithm is the first to draw from a uniform distribution over the sequences of orthogonal matrices given the reduced-form ...
Working Papers , Paper 24-05

Working Paper
Inference Based On Time-Varying SVARs Identified with Time Restrictions

We propose an approach for Bayesian inference in time-varying structural vector autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach is a class of rotation-invariant time-varying SVARs in which the prior and posterior densities of any sequence of structural parameters belonging to the class are invariant to orthogonal transformations of the sequence. Our methodology is new to the literature. In contrast to existing algorithms for inference based on sign restrictions, our algorithm is the first to draw from a uniform distribution over the sequences of ...
FRB Atlanta Working Paper , Paper 2024-4

FILTER BY year

FILTER BY Content Type

Working Paper 15 items

Report 1 items

FILTER BY Jel Classification

C51 6 items

C11 5 items

C32 5 items

E32 5 items

E52 3 items

E58 3 items

show more (33)

FILTER BY Keywords

structural vector autoregressions 3 items

time-varying parameters 3 items

heteroskedasticity 2 items

instrumental variables 2 items

local projections 2 items

show more (62)

PREVIOUS / NEXT