Search Results

SORT BY: PREVIOUS / NEXT
Keywords:artificial intelligence 

Journal Article
Has AI Improved Productivity?

Research Spotlight on "Does Machine Translation Affect International Trade? Evidence from a Large Digital Platform." Erik Brynjolfsson, Xiang Hui, and Meng Liu. National Bureau of Economic Research Working Paper No. 24917, August 2018.
Econ Focus , Issue 4Q , Pages 07-07

Journal Article
Federal Reserve: Artificial Intelligence and Bank Supervision

Artificial intelligence has come a long way since English mathematician, logician, and cryptographer Alan Turing's seminal 1950 essay, "Computing Machinery and Intelligence," which explored the idea of building computers capable of imitating human thought. In 1997, almost 50 years after Turing's essay, AI posted a historic breakthrough when the IBM supercomputer Deep Blue won a chess match against reigning world champion Garry Kasparov. Since then, AI's capabilities have improved rapidly, largely through advances in machine learning (ML), especially in ML models that use digital neural ...
Econ Focus , Volume 23 , Issue 2Q , Pages 8-11

Journal Article
New from the Richmond Fed’s Regional Matters blog

Econ Focus , Volume 24 , Issue 3Q , Pages 2

Journal Article
Interview: Daron Acemoglu

Daron Acemoglu is one of MIT's nine university- wide Institute Professors, the university's highest faculty rank. One of his predecessors, Robert Solow, developed a pathbreaking mathematical model of economic growth in the 1950s. Today, Acemoglu says hurray for economic growth — but is also concerned that choices made by policymakers and companies are channeling the gains from that growth away from workers. And as he sees things, the powerful AI technologies that have come to the fore in the past several years, embedded in products such as ChatGPT, should be regulated with the economic ...
Econ Focus , Volume 23 , Issue 2Q , Pages 22-26

Journal Article
New disruption from artificial intelligence exposes high-skilled workers

With workers still grappling with the consequences of automation, the lightning-speed pace of artificial intelligence (AI) development poses fresh concerns of a new wave of worker displacement.
Southwest Economy

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce in-sample conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor.
Working Papers , Paper 2023-015

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor. We argue that this method of generating forecasts is inexpensive and can be ...
Working Papers , Paper 2023-015

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor. We argue that this method of generating forecasts is inexpensive and can be ...
Working Papers , Paper 2023-015

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce in-sample conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor.
Working Papers , Paper 2023-015

Report
How Retrainable Are AI-Exposed Workers?

We document the extent to which workers in AI-exposed occupations can successfully retrain for AI-intensive work. We assemble a new workforce development dataset spanning over 1.6 million job training participation spells from all U.S. Workforce Investment and Opportunity Act programs from 2012-2023 linked with occupational measures of AI exposure. Using earnings records observed before and after training, we compare high AI exposure trainees to a matched sample of similar workers who only received job search assistance. We find that AI-exposed workers have high earnings returns from training ...
Staff Reports , Paper 1165

FILTER BY year

FILTER BY Content Type

FILTER BY Jel Classification

E31 5 items

C45 4 items

C53 4 items

E37 4 items

O33 2 items

C83 1 items

show more (9)

FILTER BY Keywords

PREVIOUS / NEXT