Search Results
Working Paper
Financial Conditions and Economic Activity: Insights from Machine Learning
Machine learning (ML) techniques are used to construct a financial conditions index (FCI). The components of the ML-FCI are selected based on their ability to predict the unemployment rate one-year ahead. Three lessons for macroeconomics and variable selection/dimension reduction with large datasets emerge. First, variable transformations can drive results, emphasizing the need for transparency in selection of transformations and robustness to a range of reasonable choices. Second, there is strong evidence of nonlinearity in the relationship between financial variables and economic ...
Working Paper
Assessing Macroeconomic Tail Risks in a Data-Rich Environment
We use a large set of economic and financial indicators to assess tail risks of the three macroeconomic variables: real GDP, unemployment, and inflation. When applied to U.S. data, we find evidence that a dense model using principal components (PC) as predictors might be misspecified by imposing the “common slope” assumption on the set of predictors across multiple quantiles. The common slope assumption ignores the heterogeneous informativeness of individual predictors on different quantiles. However, the parsimony of the PC-based approach improves the accuracy of out-of-sample forecasts ...