Search Results

SORT BY: PREVIOUS / NEXT
Keywords:Prediction 

Working Paper
Artificial Intelligence Methods for Evaluating Global Trade Flows

International trade policies remain in the spotlight given the recent rethink on the benefits of globalization by major economies. Since trade critically affects employment, production, prices and wages, understanding and predicting future patterns of trade is a high-priority for decision making within and across countries. While traditional economic models aim to be reliable predictors, we consider the possibility that Artificial Intelligence (AI) techniques allow for better predictions and associations to inform policy decisions. Moreover, we outline contextual AI methods to decipher trade ...
International Finance Discussion Papers , Paper 1296

Working Paper
Random Walk Forecasts of Stationary Processes Have Low Bias

We study the use of a zero mean first difference model to forecast the level of a scalar time series that is stationary in levels. Let bias be the average value of a series of forecast errors. Then the bias of forecasts from a misspecified ARMA model for the first difference of the series will tend to be smaller in magnitude than the bias of forecasts from a correctly specified model for the level of the series. Formally, let P be the number of forecasts. Then the bias from the first difference model has expectation zero and a variance that is O(1/P-squared), while the variance of the bias ...
Working Papers , Paper 23-18

Working Paper
Evaluating Conditional Forecasts from Vector Autoregressions

Many forecasts are conditional in nature. For example, a number of central banks routinely report forecasts conditional on particular paths of policy instruments. Even though conditional forecasting is common, there has been little work on methods for evaluating conditional forecasts. This paper provides analytical, Monte Carlo, and empirical evidence on tests of predictive ability for conditional forecasts from estimated models. In the empirical analysis, we consider forecasts of growth, unemployment, and inflation from a VAR, based on conditions on the short-term interest rate. Throughout ...
Working Papers , Paper 2014-25

Working Paper
Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts

This paper shows entropic tilting to be a flexible and powerful tool for combining medium-term forecasts from BVARs with short-term forecasts from other sources (nowcasts from either surveys or other models). Tilting systematically improves the accuracy of both point and density forecasts, and tilting the BVAR forecasts based on nowcast means and variances yields slightly greater gains in density accuracy than does just tilting based on the nowcast means. Hence entropic tilting can offer?more so for persistent variables than not-persistent variables?some benefits for accurately estimating the ...
Working Papers (Old Series) , Paper 1439

Working Paper
Evaluating Conditional Forecasts from Vector Autoregressions

Many forecasts are conditional in nature. For example, a number of central banks routinely report forecasts conditional on particular paths of policy instruments. Even though conditional forecasting is common, there has been little work on methods for evaluating conditional forecasts. This paper provides analytical,Monte Carlo, and empirical evidence on tests of predictive ability for conditional forecasts from estimated models. In the empirical analysis, we consider forecasts of growth, unemployment, and inflation from a VAR, based on conditions on the short-term interest rate. Throughout ...
Working Papers (Old Series) , Paper 1413

Working Paper
An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts

When constructing unconditional point forecasts, both direct- and iterated-multistep (DMS and IMS) approaches are common. However, in the context of producing conditional forecasts, IMS approaches based on vector autoregressions (VAR) are far more common than simpler DMS models. This is despite the fact that there are theoretical reasons to believe that DMS models are more robust to misspecification than are IMS models. In the context of unconditional forecasts, Marcellino, Stock, and Watson (MSW, 2006) investigate the empirical relevance of these theories. In this paper, we extend that work ...
Working Papers , Paper 2017-40

FILTER BY year

FILTER BY Content Type

FILTER BY Jel Classification

C53 5 items

C12 3 items

C32 3 items

C52 3 items

C11 1 items

C22 1 items

show more (8)

FILTER BY Keywords

PREVIOUS / NEXT