Search Results
Working Paper
Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints
We develop an algorithm to construct approximate decision rules that are piecewise-linear and continuous for DSGE models with an occasionally binding constraint. The functional form of the decision rules allows us to derive a conditionally optimal particle filter (COPF) for the evaluation of the likelihood function that exploits the structure of the solution. We document the accuracy of the likelihood approximation and embed it into a particle Markov chain Monte Carlo algorithm to conduct Bayesian estimation. Compared with a standard bootstrap particle filter, the COPF significantly ...
Working Paper
Macroeconomic Dynamics Near the ZLB : A Tale of Two Countries
We compute a sunspot equilibrium in an estimated small-scale New Keynesian model with a zero lower bound (ZLB) constraint on nominal interest rates and a full set of stochastic fundamental shocks. In this equilibrium a sunspot shock can move the economy from a regime in which inflation is close to the central bank's target to a regime in which the central bank misses its target, inflation rates are negative, and interest rates are close to zero with high probability. A nonlinear filter is used to examine whether the U.S. in the aftermath of the Great Recession and Japan in the late 1990s ...
Working Paper
Tempered Particle Filtering
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter this distribution is generated by the state-transition equation. While straightforward to implement, the practical performance is often poor. We develop a self-tuning particle filter in which the proposal distribution is constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start from a measurement error distribution with an inflated variance, and then ...