Search Results
Working Paper
Real-Time Forecasting and Scenario Analysis using a Large Mixed-Frequency Bayesian VAR
We use a mixed-frequency vector autoregression to obtain intraquarter point and density forecasts as new, high frequency information becomes available. This model, delineated in Ghysels (2016), is specified at the lowest sampling frequency; high frequency observations are treated as different economic series occurring at the low frequency. As this type of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate parameter proliferation. We obtain high-frequency updates to forecasts by treating new data releases as conditioning information. The same ...
Working Paper
Real-Time Forecasting with a Large, Mixed Frequency, Bayesian VAR
We assess point and density forecasts from a mixed-frequency vector autoregression (VAR) to obtain intra-quarter forecasts of output growth as new information becomes available. The econometric model is specified at the lowest sampling frequency; high frequency observations are treated as different economic series occurring at the low frequency. We impose restrictions on the VAR to account explicitly for the temporal ordering of the data releases. Because this type of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate parameter proliferation. The ...