Search Results
Working Paper
A Dummy Test of Identification in Models with Bunching
We propose a simple test of the main identification assumption in models where the treatment variable takes multiple values and has bunching. The test consists of adding an indicator of the bunching point to the estimation model and testing whether the coefficient of this indicator is zero. Although similar in spirit to the test in Caetano (2015), the dummy test has important practical advantages: it is more powerful at detecting endogeneity, and it also detects violations of the functional form assumption. The test does not require exclusion restrictions and can be implemented in many ...
Report
Nonlinear Binscatter Methods
Binned scatter plots are a powerful statistical tool for empirical work in the social, behavioral, and biomedical sciences. Available methods rely on a quantile-based partitioning estimator of the conditional mean regression function to primarily construct flexible yet interpretable visualization methods, but they can also be used to estimate treatment effects, assess uncertainty, and test substantive domain-specific hypotheses. This paper introduces novel binscatter methods based on nonlinear, possibly nonsmooth M-estimation methods, covering generalized linear, robust, and quantile ...