Search Results
Working Paper
Shock-Dependent Exchange Rate Pass-Through: Evidence Based on a Narrative Sign Approach
This paper studies shock-dependent exchange rate pass-through for Japan with a Bayesian structural vector autoregression model. We identify the shocks by complementing the traditional sign and zero restrictions with narrative sign restrictions related to the Plaza Accord. We find that the narrative sign restrictions are highly informative, and substantially sharpen and even change the inferences of the structural vector autoregression model originally identified with only the traditional sign and zero restrictions. We show that there is a significant variation in the exchange rate ...
Journal Article
Cutting-Edge Methods Did Not Improve Inflation Forecasting during the COVID-19 Pandemic
Amaze Lusompa and Sai A. Sattiraju investigate whether innovations in time-varying parameter models led to improved inflation forecasting during the pandemic. They find that despite their promise prior to the pandemic, forecasting innovations did not improve the accuracy of inflation forecasts relative to a baseline time-varying parameter model during the pandemic. Their results suggest that forecasters may need to develop a new class of forecasting models, introduce new forecasting variables, or rethink how they forecast to yield more effective inflation forecasts during extreme events.