Search Results
Working Paper
Missing Data Substitution for Enhanced Robust Filtering and Forecasting in Linear State-Space Models
Replacing faulty measurements with missing values can suppress outlier-induced distortions in state-space inference. We therefore put forward two complementary methods for enhanced outlier-robust filtering and forecasting: supervised missing data substitution (MD) upon exceeding a Huber threshold, and unsupervised missing data substitution via exogenous randomization (RMDX).Our supervised method, MD, is designed to improve performance of existing Huber-based linear filters known to lose optimality when outliers of the same sign are clustered in time rather than arriving independently. The ...