Search Results
Working Paper
On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates
We propose methods for constructing regularized mixtures of density forecasts. We explore a variety of objectives and regularization penalties, and we use them in a substantive exploration of Eurozone inflation and real interest rate density forecasts. All individual inflation forecasters (even the ex post best forecaster) are outperformed by our regularized mixtures. From the Great Recession onward, the optimal regularization tends to move density forecasts’ probability mass from the centers to the tails, correcting for overconfidence.
Working Paper
Online Estimation of DSGE Models
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits o fgeneralized data tempering for “online” estimation (that is, re-estimating a model asnew data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity ofthe predictive performance to ...
Working Paper
Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective
This paper constructs individual-specific density forecasts for a panel of firms or households using a dynamic linear model with common and heterogeneous coefficients and cross-sectional heteroskedasticity. The panel considered in this paper features a large cross-sectional dimension N but short time series T. Due to the short T, traditional methods have difficulty in disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the heterogeneous parameters. To tackle this problem, I assume that there is an underlying distribution of heterogeneous parameters, ...