Search Results
Working Paper
Benchmarking Global Optimizers
We benchmark six global optimization algorithms by comparing their performance on challenging multidimensional test functions as well as on a method of simulated moments estimation of a panel data model of earnings dynamics. Five of the algorithms are from the popular NLopt open-source library: (i) Controlled Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL), (iv) Stochastic Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy distribution (ESCH). The sixth algorithm is TikTak, which ...