Search Results
Working Paper
Bayesian Modeling of Time-Varying Parameters Using Regression Trees
In light of widespread evidence of parameter instability in macroeconomic models, many time-varying parameter (TVP) models have been proposed. This paper proposes a nonparametric TVP-VAR model using Bayesian additive regression trees (BART). The novelty of this model stems from the fact that the law of motion driving the parameters is treated nonparametrically. This leads to great flexibility in the nature and extent of parameter change, both in the conditional mean and in the conditional variance. In contrast to other nonparametric and machine learning methods that are black box, inference ...
Report
A 14-Variable Mixed-Frequency VAR Model
This paper describes recent modifications to the mixed-frequency model vector autoregression (MF-VAR) constructed by Schorfheide and Song (2012). The changes to the model are restricted solely to the set of variables included in the model; all other aspects of the model remain unchanged. Forecast evaluations are conducted to gauge the accuracy of the revised model to standard benchmarks and the original model.
Working Paper
Forecasting Core Inflation and Its Goods, Housing, and Supercore Components
This paper examines the forecasting efficacy and implications of the recently popular breakdown of core inflation into three components: goods excluding food and energy, services excluding energy and housing, and housing. A comprehensive historical evaluation of the accuracy of point and density forecasts from a range of models and approaches shows that a BVAR with stochastic volatility in aggregate core inflation, its three components, and wage growth is an effective tool for forecasting inflation's components as well as aggregate core inflation. Looking ahead, the model's baseline ...