Search Results
Working Paper
Bayesian Estimation and Comparison of Conditional Moment Models
We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is speci?ed up to a set of conditional moment restrictions. This analysis is based on the nonparametric exponentially tilted empirical likelihood (ETEL) function, which is constructed to satisfy a sequence of unconditional moments, obtained from the conditional moments by an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). The posterior distribution is shown to satisfy the Bernstein-von Mises theorem, subject to a ...
Working Paper
Facts and Fiction in Oil Market Modeling
A series of recent articles has called into question the validity of VAR models of the global market for crude oil. These studies seek to replace existing oil market models by structural VAR models of their own based on different data, different identifying assumptions, and a different econometric approach. Their main aim has been to revise the consensus in the literature that oil demand shocks are a more important determinant of oil price fluctuations than oil supply shocks. Substantial progress has been made in recent years in sorting out the pros and cons of the underlying econometric ...
Working Paper
DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors
Currently, there is growing interest in dynamic stochastic general equilibrium (DSGE) models that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and substantial additional complexities from non-Gaussian distributions and the incorporation of time-varying volatility. The popular DYNARE software package, which has proved useful for small and medium-scale models is, however, not capable of handling such models, thus inhibiting the formulation and estimation of more re-alistic DSGE models. A primary goal of this paper is to ...
Working Paper
Facts and Fiction in Oil Market Modeling
Baumeister and Hamilton (2019a) assert that every critique of their work on oil markets by Kilian and Zhou (2019a) is without merit. In addition, they make the case that key aspects of the economic and econometric analysis in the widely used oil market model of Kilian and Murphy (2014) and its precursors are incorrect. Their critiques are also directed at other researchers who have worked in this area and, more generally, extend to research using structural VAR models outside of energy economics. The purpose of this paper is to help the reader understand what the real issues are in this ...
Working Paper
Payments Crises and Consequences
Banking-system shutdowns during contractions scar economies. Four times in the lastforty years, governors suspended payments from state-insured depository institutions. Suspensionsof payments in Nebraska (1983), Ohio (1985), and Maryland (1985), which wereshort and occurred during expansions, had little measurable impact on macroeconomic aggregates.Rhode Island’s payments crisis (1991), which was prolonged and occurred duringa recession, lengthened and deepened the downturn. Unemployment increased. Outputdeclined, possibly permanently relative to what might have been. We document these ...
Report
Estimating HANK for Central Banks
We provide a toolkit for efficient online estimation of heterogeneous agent (HA) New Keynesian (NK) models based on Sequential Monte Carlo methods. We use this toolkit to compare the out-of-sample forecasting accuracy of a prominent HANK model, Bayer et al. (2022), to that of the representative agent (RA) NK model of Smets and Wouters (2007, SW). We find that HANK’s accuracy for real activity variables is notably inferior to that of SW. The results for consumption in particular are disappointing since the main difference between RANK and HANK is the replacement of the RA Euler equation with ...
Working Paper
IDENTIFICATION THROUGH HETEROGENEITY
We analyze set identification in Bayesian vector autoregressions (VARs). Because set identification can be challenging, we propose to include micro data on heterogeneous entities to sharpen inference. First, we provide conditions when imposing a simple ranking of impulse-responses sharpens inference in bivariate and trivariate VARs. Importantly; we show that this set reduction also applies to variables not subject to ranking restrictions. Second, we develop two types of inference to address recent criticism: (1) an efficient fully Bayesian algorithm based on an agnostic prior that directly ...
Working Paper
A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification
This paper develops a new class of structural vector autoregressions (SVARs) with time-varying parameters, which I call a drifting SVAR (DSVAR). The DSVAR is the first structural time-varying parameter model to allow for internally consistent probabilistic inference under exact?or set?identification, nesting the widely used SVAR framework as a special case. I prove that the DSVAR implies a reduced-form representation, from which structural inference can proceed similarly to the widely used two-step approach for SVARs: beginning with estimation of a reduced form and then choosing among ...
Working Paper
Understanding the Estimation of Oil Demand and Oil Supply Elasticities
This paper examines the advantages and drawbacks of alternative methods of estimating oil supply and oil demand elasticities and of incorporating this information into structural VAR models. I not only summarize the state of the literature, but also draw attention to a number of econometric problems that have been overlooked in this literature. Once these problems are recognized, seemingly conflicting conclusions in the recent literature can be resolved. My analysis reaffirms the conclusion that the one-month oil supply elasticity is close to zero, which implies that oil demand shocks are the ...
Working Paper
Online Estimation of DSGE Models
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits o fgeneralized data tempering for “online” estimation (that is, re-estimating a model asnew data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity ofthe predictive performance to ...