Search Results

Showing results 1 to 10 of approximately 56.

(refine search)
Jel Classification:E17 

Vulnerable growth

We study the conditional distribution of GDP growth as a function of economic and financial conditions. Deteriorating financial conditions are associated with an increase in the conditional volatility and a decline in the conditional mean of GDP growth, leading the lower quantiles of GDP growth to vary with financial conditions and the upper quantiles to be stable over time: Upside risks to GDP growth are low in most periods while downside risks increase as financial conditions become tighter. We argue that amplification mechanisms in the financial sector generate the observed growth ...
Staff Reports , Paper 794

Working Paper
The Accuracy of Forecasts Prepared for the Federal Open Market Committee

We analyze forecasts of consumption, nonresidential investment, residential investment, government spending, exports, imports, inventories, gross domestic product, inflation, and unemployment prepared by the staff of the Board of Governors of the Federal Reserve System for meetings of the Federal Open Market Committee from 1997 to 2008, called the Greenbooks. We compare the root mean squared error, mean absolute error, and the proportion of directional errors of Greenbook forecasts of these macroeconomic indicators to the errors from three forecasting benchmarks: a random walk, a first-order ...
Finance and Economics Discussion Series , Paper 2015-62

Working Paper
Significance Bands for Local Projections

An impulse response function describes the dynamic evolution of an outcome variable following a stimulus or treatment. A common hypothesis of interest is whether the treatment affects the outcome. We show that this hypothesis is best assessed using significance bands rather than relying on commonly displayed confidence bands. Under the null hypothesis, we show that significance bands are trivial to construct with standard statistical software using the LM principle, and should be reported as a matter of routine when displaying impulse responses graphically.
Working Paper Series , Paper 2023-15

Working Paper
Information and Inequality in the Time of a Pandemic

We introduce two types of agent heterogeneity in a calibrated epidemiological search model. First, some agents cannot afford to stay home to minimize virus exposure. Our results show that poor agents bear most of the epidemic’s health costs. Furthermore, we show that when a larger share of agents fail to change their behavior during the epidemic, a deeper recession is possible. Second, agents develop symptoms heterogeneously. We show that for diseases with a higher share of asymptomatic cases, even when less lethal, health and economic outcomes are worse. Public policies such as testing, ...
Working Papers , Paper 20-25

Behavior and the Transmission of COVID-19

We show that a simple model of COVID-19 that incorporates feedback from disease prevalence to disease transmission through an endogenous response of human behavior does a remarkable job fitting the main features of the data on the growth rates of daily deaths observed across a large number countries and states of the United States from March to November of 2020. This finding, however, suggests a new empirical puzzle. Using an accounting procedure akin to that used for Business Cycle Accounting as in Chari et al. (2007), we show that when the parameters of the behavioral response of ...
Staff Report , Paper 618

Working Paper
Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility

We develop a sequential Monte Carlo (SMC) algorithm for Bayesian inference in vector autoregressions with stochastic volatility (VAR-SV). The algorithm builds particle approximations to the sequence of the model’s posteriors, adapting the particles from one approximation to the next as the window of available data expands. The parallelizability of the algorithm’s computations allows the adaptations to occur rapidly. Our particular algorithm exploits the ability to marginalize many parameters from the posterior analytically and embeds a known Markov chain Monte Carlo (MCMC) algorithm for ...
Working Papers , Paper 19-29

Working Paper
What's the Story? A New Perspective on the Value of Economic Forecasts

We apply textual analysis tools to measure the degree of optimism versus pessimism of the text that describes Federal Reserve Board forecasts published in the Greenbook. The resulting measure of Greenbook text sentiment, ?Tonality,? is found to be strongly correlated, in the intuitive direction, with the Greenbook point forecast for key economic variables such as unemployment and inflation. We then examine whether Tonality has incremental power for predicting unemployment, GDP growth, and inflation up to four quarters ahead. We find it to have significant and substantive predictive power for ...
Finance and Economics Discussion Series , Paper 2017-107

Working Paper
Country-specific oil supply shocks and the global economy: a counterfactual analysis

This paper investigates the global macroeconomic consequences of country-specific oilsupply shocks. Our contribution is both theoretical and empirical. On the theoretical side, we develop a model for the global oil market and integrate this within a compact quarterly model of the global economy to illustrate how our multi-country approach to modelling oil markets can be used to identify country-specific oil-supply shocks. On the empirical side, estimating the GVAR-Oil model for 27 countries/regions over the period 1979Q2 to 2013Q1, we show that the global economic implications of oil-supply ...
Globalization Institute Working Papers , Paper 242

Working Paper
Have Standard VARs Remained Stable since the Crisis?

Small or medium-scale VARs are commonly used in applied macroeconomics for forecasting and evaluating the shock transmission mechanism. This requires the VAR parameters to be stable over the evaluation and forecast sample, or to explicitly consider parameter time variation. The earlier literature focused on whether there were sizable parameter changes in the early 1980s, in either the conditional mean or variance parameters, and in the subsequent period till the beginning of the new century. In this paper we conduct a similar analysis but focus on the effects of the recent crisis. Using a ...
Working Papers (Old Series) , Paper 1411

Working Paper
Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts

This paper shows entropic tilting to be a flexible and powerful tool for combining medium-term forecasts from BVARs with short-term forecasts from other sources (nowcasts from either surveys or other models). Tilting systematically improves the accuracy of both point and density forecasts, and tilting the BVAR forecasts based on nowcast means and variances yields slightly greater gains in density accuracy than does just tilting based on the nowcast means. Hence entropic tilting can offer?more so for persistent variables than not-persistent variables?some benefits for accurately estimating the ...
Working Papers (Old Series) , Paper 1439


FILTER BY Content Type


Clark, Todd E. 12 items

Carriero, Andrea 10 items

Marcellino, Massimiliano 7 items

Giannone, Domenico 4 items

Adrian, Tobias 3 items

Boyarchenko, Nina 3 items

show more (77)

FILTER BY Jel Classification

E37 25 items

C53 23 items

C32 11 items

F47 11 items

E31 10 items

show more (51)

FILTER BY Keywords

Forecasting 14 items

downside risk 6 items

pandemics 5 items

quantile regressions 5 items

COVID-19 4 items

Inflation 4 items

show more (132)