Search Results

Showing results 1 to 10 of approximately 25.

(refine search)
SORT BY: PREVIOUS / NEXT
Jel Classification:C45 

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor. We argue that this method of generating forecasts is inexpensive and can be ...
Working Papers , Paper 2023-015

Working Paper
How Centralized is U.S. Metropolitan Employment?

Centralized employment remains a benchmark stylization of metropolitan land use.To address its empirical relevance, we delineate "central employment zones" (CEZs)- central business districts together with nearby concentrated employment|for 183 metropolitan areas in 2000. To do so, we first subjectively classify which census tracts in a training sample of metros belong to their metro's CEZ and then use a learning algorithm to construct a function that predicts our judgment. {{p}} Applying this prediction function to the full cross section of metros estimates the probability we would judge ...
Research Working Paper , Paper RWP 17-16

Working Paper
Mind Your Language: Market Responses to Central Bank Speeches

Researchers have carefully studied post-meeting central bank communication and have found that it often moves markets, but they have paid less attention to the more frequent central bankers’ speeches. We create a novel dataset of US Federal Reserve speeches and use supervised multimodal natural language processing methods to identify how monetary policy news affect financial volatility and tail risk through implied changes in forecasts of GDP, inflation, and unemployment. We find that news in central bankers’ speeches can help explain volatility and tail risk in both equity and bond ...
Working Papers , Paper 2023-013

Working Paper
Integrating Prediction and Attribution to Classify News

Recent modeling developments have created tradeoffs between attribution-based models, models that rely on causal relationships, and “pure prediction models†such as neural networks. While forecasters have historically favored one technology or the other based on comfort or loyalty to a particular paradigm, in domains with many observations and predictors such as textual analysis, the tradeoffs between attribution and prediction have become too large to ignore. We document these tradeoffs in the context of relabeling 27 million Thomson Reuters news articles published between 1996 ...
Finance and Economics Discussion Series , Paper 2022-042

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor. We argue that this method of generating forecasts is inexpensive and can be ...
Working Papers , Paper 2023-015

Working Paper
Machine Learning, the Treasury Yield Curve and Recession Forecasting

We use machine learning methods to examine the power of Treasury term spreads and other financial market and macroeconomic variables to forecast US recessions, vis-à-vis probit regression. In particular we propose a novel strategy for conducting cross-validation on classifiers trained with macro/financial panel data of low frequency and compare the results to those obtained from standard k-folds cross-validation. Consistent with the existing literature we find that, in the time series setting, forecast accuracy estimates derived from k-folds are biased optimistically, and cross-validation ...
Finance and Economics Discussion Series , Paper 2020-038

Working Paper
Spatial Dependence and Data-Driven Networks of International Banks

This paper computes data-driven correlation networks based on the stock returns of international banks and conducts a comprehensive analysis of their topological properties. We first apply spatial-dependence methods to filter the effects of strong common factors and a thresholding procedure to select the significant bilateral correlations. The analysis of topological characteristics of the resulting correlation networks shows many common features that have been documented in the recent literature but were obtained with private information on banks? exposures. Our analysis validates these ...
Working Papers (Old Series) , Paper 1627

Working Paper
Deep Neural Network Estimation in Panel Data Models

In this paper we study neural networks and their approximating power in panel data models. We provide asymptotic guarantees on deep feed-forward neural network estimation of the conditional mean, building on the work of Farrell et al. (2021), and explore latent patterns in the cross-section. We use the proposed estimators to forecast the progression of new COVID-19 cases across the G7 countries during the pandemic. We find significant forecasting gains over both linear panel and nonlinear time-series models. Containment or lockdown policies, as instigated at the national level by governments, ...
Working Papers , Paper 23-15

Working Paper
Artificial Intelligence and Inflation Forecasts

We explore the ability of Large Language Models (LLMs) to produce in-sample conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor.
Working Papers , Paper 2023-015

Working Paper
Macroeconomic Indicator Forecasting with Deep Neural Networks

Economic policymaking relies upon accurate forecasts of economic conditions. Current methods for unconditional forecasting are dominated by inherently linear models {{p}} that exhibit model dependence and have high data demands. {{p}} We explore deep neural networks as an {{p}} opportunity to improve upon forecast accuracy with limited data and while remaining agnostic as to {{p}} functional form. We focus on predicting civilian unemployment using models based on four different neural network architectures. Each of these models outperforms bench- mark models at short time horizons. One model, ...
Research Working Paper , Paper RWP 17-11

FILTER BY year

FILTER BY Content Type

Working Paper 25 items

FILTER BY Author

FILTER BY Jel Classification

C53 10 items

G10 9 items

C50 8 items

Q35 8 items

Q40 8 items

show more (21)

FILTER BY Keywords

PREVIOUS / NEXT