Search Results

Showing results 1 to 10 of approximately 28.

(refine search)
Jel Classification:C12 

Working Paper
Too Good to Be True? Fallacies in Evaluating Risk Factor Models

This paper is concerned with statistical inference and model evaluation in possibly misspecified and unidentified linear asset-pricing models estimated by maximum likelihood and one-step generalized method of moments. Strikingly, when spurious factors (that is, factors that are uncorrelated with the returns on the test assets) are present, the models exhibit perfect fit, as measured by the squared correlation between the model's fitted expected returns and the average realized returns. Furthermore, factors that are spurious are selected with high probability, while factors that are useful are ...
FRB Atlanta Working Paper , Paper 2017-9

Working Paper
Asymptotic variance approximations for invariant estimators in uncertain asset-pricing models

This paper derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously updated GMM estimators under potentially misspecified models. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. Although the results for the maximum likelihood estimator are only applicable to linear asset-pricing models, the asymptotic distribution of the continuously updated GMM estimator is derived for general, possibly nonlinear, models. The large ...
FRB Atlanta Working Paper , Paper 2015-9

Working Paper
Spurious Inference in Unidentified Asset-Pricing Models

This paper studies some seemingly anomalous results that arise in possibly misspecified and unidentified linear asset-pricing models estimated by maximum likelihood and one-step generalized method of moments (GMM). Strikingly, when useless factors (that is, factors that are independent of the returns on the test assets) are present, the models exhibit perfect fit, as measured by the squared correlation between the model's fitted expected returns and the average realized returns, and the tests for correct model specification have asymptotic power that is equal to the nominal size. In other ...
FRB Atlanta Working Paper , Paper 2014-12

Working Paper
Misspecification-robust inference in linear asset pricing models with irrelevant risk factors

We show that in misspecified models with useless factors (for example, factors that are independent of the returns on the test assets), the standard inference procedures tend to erroneously conclude, with high probability, that these irrelevant factors are priced and the restrictions of the model hold. Our proposed model selection procedure, which is robust to useless factors and potential model misspecification, restores the standard inference and proves to be effective in eliminating factors that do not improve the model's pricing ability. The practical relevance of our analysis is ...
FRB Atlanta Working Paper , Paper 2013-09

The relationship between expected inflation, disagreement, and uncertainty: evidence from matched point and density forecasts

This paper examines matched point and density forecasts of inflation from the Survey of Professional Forecasters to analyze the relationship between expected inflation, disagreement, and uncertainty. We extend previous studies through our data construction and estimation methodology. Specifically, we derive measures of disagreement and uncertainty by using a decomposition proposed in earlier research by Wallis and by applying the concept of entropy from information theory. We also undertake the empirical analysis within a seemingly unrelated regression framework. Our results offer mixed ...
Staff Reports , Paper 253

Robust inference in models identified via heteroskedasticity

Identification via heteroskedasticity exploits differences in variances across regimes to identify parameters in simultaneous equations. I study weak identification in such models, which arises when variances change very little or the variances of multiple shocks change close to proportionally. I show that this causes standard inference to become unreliable, outline two tests to detect weak identification, and establish conditions for the validity of nonconservative methods for robust inference on an empirically relevant subset of the parameter vector. I apply these tools to monetary policy ...
Staff Reports , Paper 876

Working Paper
A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area

This paper examines point and density forecasts of real GDP growth, inflation and unemployment from the European Central Bank?s Survey of Professional Forecasters. We present individual uncertainty measures and introduce individual point- and density-based measures of disagreement. The data indicate substantial heterogeneity and persistence in respondents? uncertainty and disagreement, with uncertainty associated with prominent respondent effects and disagreement associated with prominent time effects. We also examine the co-movement between uncertainty and disagreement and find an ...
Working Papers , Paper 1811

Working Paper
Identifying Structural VARs with a Proxy Variable and a Test for a Weak Proxy

This paper develops a simple estimator to identify structural shocks in vector autoregressions (VARs) by using a proxy variable that is correlated with the structural shock of interest but uncorrelated with other structural shocks. When the proxy variable is weak, modeled as local to zero, the estimator is inconsistent and converges to a distribution. This limiting distribution is characterized, and the estimator is shown to be asymptotically biased when the proxy variable is weak. The F statistic from the projection of the proxy variable onto the VAR errors can be used to test for a weak ...
Working Papers (Old Series) , Paper 1528

Working Paper
Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter

Although the trajectory and path of future outcomes plays an important role in policy decisions, analyses of forecast accuracy typically focus on individual point forecasts. However, it is important to examine the path forecasts errors since they include the forecast dynamics. We use the link between path forecast evaluation methods and the joint predictive density to propose a test for differences in system path forecast accuracy. We also demonstrate how our test relates to and extends existing joint testing approaches. Simulations highlight both the advantages and disadvantages of path ...
Working Papers (Old Series) , Paper 1717

Working Paper
Evaluating Conditional Forecasts from Vector Autoregressions

Many forecasts are conditional in nature. For example, a number of central banks routinely report forecasts conditional on particular paths of policy instruments. Even though conditional forecasting is common, there has been little work on methods for evaluating conditional forecasts. This paper provides analytical,Monte Carlo, and empirical evidence on tests of predictive ability for conditional forecasts from estimated models. In the empirical analysis, we consider forecasts of growth, unemployment, and inflation from a VAR, based on conditions on the short-term interest rate. Throughout ...
Working Papers (Old Series) , Paper 1413


FILTER BY Content Type


FILTER BY Jel Classification

C13 11 items

C52 10 items

C53 8 items

C32 7 items

G12 5 items

show more (25)

FILTER BY Keywords

Prediction 6 items

out-of-sample 5 items

model misspecification 4 items

asset pricing 3 items

banks 3 items

continuously updated GMM 3 items

show more (65)