Search Results

Showing results 1 to 3 of approximately 3.

(refine search)
Author:Meursault, Vitaly 

Working Paper
PEAD.txt: Post-Earnings-Announcement Drift Using Text

We construct a new numerical measure of earnings announcement surprises, standardized unexpected earnings call text (SUE.txt), that does not explicitly incorporate the reported earnings value. SUE.txt generates a text-based post-earnings announcement drift (PEAD.txt) larger than the classic PEAD and can be used to create a profitable trading strategy. Leveraging the prediction model underlying SUE.txt, we propose new tools to study the news content of text: paragraph-level SUE.txt and paragraph classification scheme based on the business curriculum. With these tools, we document many ...
Working Papers , Paper 21-07

Working Paper
Corporate Disclosure: Facts or Opinions?

A large body of literature documents the link between textual communication (e.g., news articles, earnings calls) and firm fundamentals, either through pre-defined “sentiment” dictionaries or through machine learning approaches. Surprisingly, little is known about why textual communication matters. In this paper, we take a step in that direction by developing a new methodology to automatically classify statements into objective (“facts”) and subjective (“opinions”) and apply it to transcripts of earnings calls. The large scale estimation suggests several novel results: (1) Facts ...
Working Papers , Paper 21-40

Working Paper
One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas

Modeling advances create credit scores that predict default better overall, but raise concerns about their effect on protected groups. Focusing on low- and moderate-income (LMI) areas, we use an approach from the Fairness in Machine Learning literature — fairness constraints via group-specific prediction thresholds — and show that gaps in true positive rates (% of non-defaulters identified by the model as such) can be significantly reduced if separate thresholds can be chosen for non-LMI and LMI tracts. However, the reduction isn’t free as more defaulters are classified as good risks, ...
Working Papers , Paper 22-39



FILTER BY Content Type


FILTER BY Jel Classification

C00 2 items

G12 2 items

G14 2 items

C38 1 items

C53 1 items

G51 1 items

show more (1)

FILTER BY Keywords

Machine Learning 3 items

NLP 2 items

Text Analysis 2 items

Credit Scores 1 items

Fairness 1 items

Group Disparities 1 items

show more (3)