Search Results

Showing results 1 to 10 of approximately 18.

(refine search)
SORT BY: PREVIOUS / NEXT
Author:Carriero, Andrea 

Working Paper
Assessing International Commonality in Macroeconomic Uncertainty and Its Effects

This paper uses a large vector autoregression (VAR) to measure international macroeconomic uncertainty and its effects on major economies, using two datasets, one with GDP growth rates for 19 industrialized countries and the other with a larger set of macroeconomic indicators for the U.S., euro area, and U.K. Using basic factor model diagnostics, we first provide evidence of significant commonality in international macroeconomic volatility, with one common factor accounting for strong comovement across economies and variables. We then turn to measuring uncertainty and its effects with a large ...
Working Papers (Old Series) , Paper 1803

Working Paper
Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility

This paper develops a method for producing current-quarter forecasts of GDP growth with a (possibly large) range of available within-the-quarter monthly observations of economic indicators, such as employment and industrial production, and financial indicators, such as stock prices and interest rates. In light of existing evidence of time variation in the variances of shocks to GDP, we consider versions of the model with both constant variances and stochastic volatility. We also evaluate models with either constant or time-varying regression coefficients. We use Bayesian methods to estimate ...
Working Papers (Old Series) , Paper 1227

Working Paper
Endogenous Uncertainty

We show that macroeconomic uncertainty can be considered as exogenous when assessing its effects on the U.S. economy. Instead, financial uncertainty can at least in part arise as an endogenous response to some macroeconomic developments, and overlooking this channel leads to distortions in the estimated effects of financial uncertainty shocks on the economy. We obtain these empirical findings with an econometric model that simultaneously allows for contemporaneous effects of both uncertainty shocks on economic variables and of economic shocks on uncertainty. While the traditional econometric ...
Working Papers (Old Series) , Paper 1805

Working Paper
Measuring Uncertainty and Its Impact on the Economy

We propose a new framework for measuring uncertainty and its effects on the economy, based on a large VAR model with errors whose stochastic volatility is driven by two common unobservable factors, representing aggregate macroeconomic and financial uncertainty. The uncertainty measures can also influence the levels of the variables so that, contrary to most existing measures, ours reflect changes in both the conditional mean and volatility of the variables, and their impact on the economy can be assessed within the same framework. Moreover, identification of the uncertainty shocks is ...
Working Papers (Old Series) , Paper 1622

Working Paper
Assessing International Commonality in Macroeconomic Uncertainty and Its Effects

This paper uses a large vector autoregression to measure international macroeconomic uncertainty and its effects on major economies. We provide evidence of significant commonality in macroeconomic volatility, with one common factor driving strong comovement across economies and variables. We measure uncertainty and its effects with a large model in which the error volatilities feature a factor structure containing time-varying global components and idiosyncratic components. Global uncertainty contemporaneously affects both the levels and volatilities of the included variables. Our new ...
Working Papers , Paper 201803R

Working Paper
Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions

A rapidly growing body of research has examined tail risks in macroeconomic outcomes. Most of this work has focused on the risks of significant declines in GDP, and it has relied on quantile regression methods to estimate tail risks. Although much of this work discusses asymmetries in conditional predictive distributions, the analysis often focuses on evidence of downside risk varying more than upside risk. We note that this pattern in risk estimates over time could obtain with conditional distributions that are symmetric but subject to simultaneous shifts in conditional means (down) and ...
Working Papers , Paper 202002R

Working Paper
Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions

A rapidly growing body of research has examined tail risks in macroeconomic outcomes. Most of this work has focused on the risks of significant declines in GDP, and has relied on quantile regression methods to estimate tail risks. In this paper we examine the ability of Bayesian VARs with stochastic volatility to capture tail risks in macroeconomic forecast distributions and outcomes. We consider both a conventional stochastic volatility specification and a specification featuring a common volatility factor that is a function of past financial conditions. Even though the conditional ...
Working Papers , Paper 202002

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, classical and Bayesian quantile regressions, quantile MIDAS regressions) and also different methods for data reduction (either forecasts from models that incorporate data reduction or the combination of forecasts from smaller models). Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically ...
Working Papers , Paper 202013R

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, as well as classical and Bayesian quantile regressions) and also different methods for data reduction (either forecasts from models that incorporate data reduction or the combination of forecasts from smaller models). Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically improves as time moves ...
Working Papers , Paper 202013R2

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on tail risk nowcasts of economic activity, measured by GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, classical and Bayesian quantile regressions, quantile MIDAS regressions) and also different methods for data reduction (either the combination of forecasts from smaller models or forecasts from models that incorporate data reduction). The results show that classical and MIDAS quantile regressions perform very well in-sample but not out-of-sample, ...
Working Papers , Paper 202013

FILTER BY year

FILTER BY Bank

FILTER BY Series

FILTER BY Content Type

Working Paper 18 items

FILTER BY Author

FILTER BY Jel Classification

C53 10 items

E17 8 items

C11 7 items

E37 7 items

F47 6 items

E32 4 items

show more (12)

FILTER BY Keywords

PREVIOUS / NEXT