Search Results
Journal Article
FRED-QD: A Quarterly Database for Macroeconomic Research
In this article, we present and describe FRED-QD, a large, quarterly frequency macroeconomic database that is currently available and regularly updated at https://research.stlouisfed.org/econ/mccracken/fred-databases/. The data provided are closely modeled to that used in Stock and Watson (2012a). As in our previous work on FRED-MD (McCracken and Ng, 2016), which is at a monthly frequency, our goal is simply to provide a publicly available source of macroeconomic "big data" that is updated in real time using the FRED® data service. We show that factors extracted from the FRED-QD dataset ...
Working Paper
Minimum distance estimation of possibly non-invertible moving average models
This paper considers estimation of moving average (MA) models with non-Gaussian errors. Information in higher-order cumulants allows identification of the parameters without imposing invertibility. By allowing for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model has classical (root-T and asymptotic normal) properties when the moving average root is inside, outside, and on the unit circle. For more general models where the dependence of the cumulants on the model parameters is analytically intractable, we consider simulation-based estimators with two ...
Working Paper
FRED-MD: A Monthly Database for Macroeconomic Research
This paper describes a large, monthly frequency, macroeconomic database with the goal of establishing a convenient starting point for empirical analysis that requires "big data." The dataset mimics the coverage of those already used in the literature but has three appealing features. First, it is designed to be updated monthly using the FRED database. Second, it will be publicly accessible, facilitating comparison of related research and replication of empirical work. Third, it will relieve researchers from having to manage data changes and revisions. We show that factors extracted from our ...
Working Paper
Minimum Distance Estimation of Dynamic Models with Errors-In-Variables
Empirical analysis often involves using inexact measures of desired predictors. The bias created by the correlation between the problematic regressors and the error term motivates the need for instrumental variables estimation. This paper considers a class of estimators that can be used when external instruments may not be available or are weak. The idea is to exploit the relation between the parameters of the model and the least squares biases. In cases when this mapping is not analytically tractable, a special algorithm is designed to simulate the latent predictors without completely ...
Working Paper
FRED-QD: A Quarterly Database for Macroeconomic Research
In this paper we present and describe a large quarterly frequency, macroeconomic database. The data provided are closely modeled to that used in Stock and Watson (2012a). As in our previous work on FRED-MD, our goal is simply to provide a publicly available source of macroeconomic “big data” that is updated in real time using the FRED database. We show that factors extracted from this data set exhibit similar behavior to those extracted from the original Stock and Watson data set. The dominant factors are shown to be insensitive to outliers, but outliers do affect the relative influence ...
Report
Dynamic hierarchical factor models
This paper uses multi-level factor models to characterize within- and between-block variations as well as idiosyncratic noise in large dynamic panels. Block-level shocks are distinguished from genuinely common shocks, and the estimated block-level factors are easy to interpret. The framework achieves dimension reduction and yet explicitly allows for heterogeneity between blocks. The model is estimated using a Markov chain Monte-Carlo algorithm that takes into account the hierarchical structure of the factors. We organize a panel of 447 series into blocks according to the timing of data ...