Search Results
Working Paper
In-sample tests of predictive ability: a new approach
This paper presents analytical, Monte Carlo, and empirical evidence linking in-sample tests of predictive content and out-of-sample forecast accuracy. Our approach focuses on the negative effect that finite-sample estimation error has on forecast accuracy despite the presence of significant population-level predictive content. Specifically, we derive simple-to-use in-sample tests that test not only whether a particular variable has predictive content but also whether this content is estimated precisely enough to improve forecast accuracy. Our tests are asymptotically non-central chi-square or ...
Working Paper
Evaluating long-horizon forecasts
This paper examines the asymptotic and finite-sample properties of tests of equal forecast accuracy and encompassing applied to predictions from nested long-horizon regression models. We first derive the asymptotic distributions of a set of tests of equal forecast accuracy and encompassing, showing that the tests have non-standard distributions that depend on the parameters of the data-generating process. Using a simple parametric bootstrap for inference, we then conduct Monte Carlo simulations of a range of data-generating processes to examine the finite-sample size and power of the tests. ...
Working Paper
Real-Time Forecasting and Scenario Analysis using a Large Mixed-Frequency Bayesian VAR
We use a mixed-frequency vector autoregression to obtain intraquarter point and density forecasts as new, high frequency information becomes available. This model, delineated in Ghysels (2016), is specified at the lowest sampling frequency; high frequency observations are treated as different economic series occurring at the low frequency. As this type of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate parameter proliferation. We obtain high-frequency updates to forecasts by treating new data releases as conditioning information. The same ...
Journal Article
Using stock market liquidity to forecast recessions
Market participants rebalance their portfolios in advance of a recession.
Working Paper
Forecast disagreement among FOMC members
This paper presents empirical evidence on the disagreement among Federal Open Market Committee (FOMC) forecasts. In contrast to earlier studies that analyze the range of FOMC forecasts available in the Monetary Policy Report to the Congress, we analyze the forecasts made by each individual member of the FOMC from 1992 to 1998. This newly available dataset, while rich in detail, is short in duration. Even so, we are able to identify a handful of patterns in the forecasts related to i) forecast horizon; ii) whether the individual is a Federal Reserve Bank president, governor, and/or Vice ...
Working Paper
Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors
We develop uncertainty measures for point forecasts from surveys such as the Survey of Professional Forecasters, Blue Chip, or the Federal Open Market Committee's Summary of Economic Projections. At a given point of time, these surveys provide forecasts for macroeconomic variables at multiple horizons. To track time-varying uncertainty in the associated forecast errors, we derive a multiple-horizon specification of stochastic volatility. Compared to constant-variance approaches, our stochastic-volatility model improves the accuracy of uncertainty measures for survey forecasts.
Are Initial Jobless Claims a Useful Gauge of Labor Market Conditions?
For business economists, crossing 400,000 initial jobless claims can signal a reversal in labor market conditions. Is this threshold still useful?
Working Paper
On the Real-Time Predictive Content of Financial Conditions Indices for Growth
We provide evidence on the real-time predictive content of the National Financial Conditions Index (NFCI), for conditional quantiles of U.S. real GDP growth. Our work is distinct from the literature in two specific ways. First, we construct (unofficial) real-time vintages of the NFCI. This allows us to conduct out-of-sample analysis without introducing the kind of look-ahead biases that are naturally introduced when using a single current vintage. We then develop methods for conducting asymptotic inference on tests of equal tick loss between nested quantile regression models when the data are ...
Working Paper
Reconsidering the Fed’s Forecasting Advantage
Previous studies show the Fed has a forecast advantage over the private sector, either because it devotes more resources to forecasting or because it has an informational advantage in knowing the path of future monetary policy. We evaluate the Fed’s forecast advantage to determine how much of it results from the Fed’s knowledge of the conditioning path. We develop two tests—an instrumental variable encompassing test and a path-dependent encompassing test—to equalize the Fed’s information set with the private sector’s. We find that, generally, the Fed does not encompass the private ...
Working Paper
Nested forecast model comparisons: a new approach to testing equal accuracy
This paper develops bootstrap methods for testing whether, in a finite sample, competing out-of-sample forecasts from nested models are equally accurate. Most prior work on forecast tests for nested models has focused on a null hypothesis of equal accuracy in population basically, whether coefficients on the extra variables in the larger, nesting model are zero. We instead use an asymptotic approximation that treats the coefficients as non-zero but small, such that, in a finite sample, forecasts from the small model are expected to be as accurate as forecasts from the large model. Under that ...