Search Results
Working Paper
Online Estimation of DSGE Models
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits o fgeneralized data tempering for “online” estimation (that is, re-estimating a model asnew data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity ofthe predictive performance to ...
Report
Estimating HANK for Central Banks
We provide a toolkit for efficient online estimation of heterogeneous agent (HA) New Keynesian (NK) models based on Sequential Monte Carlo methods. We use this toolkit to compare the out-of-sample forecasting accuracy of a prominent HANK model, Bayer et al. (2022), to that of the representative agent (RA) NK model of Smets and Wouters (2007, SW). We find that HANK’s accuracy for real activity variables is notably inferior to that of SW. The results for consumption in particular are disappointing since the main difference between RANK and HANK is the replacement of the RA Euler equation with ...
Discussion Paper
Online Estimation of DSGE Models
The estimation of dynamic stochastic general equilibrium (DSGE) models is a computationally demanding task. As these models change to address new challenges (such as household and firm heterogeneity, the lower bound on nominal interest rates, and occasionally binding financial constraints), they become even more complex and difficult to estimate?so much so that current estimation procedures are no longer up to the task. This post discusses a new technique for estimating these models which belongs to the class of sequential Monte Carlo (SMC) algorithms, an approach we employ to estimate the ...
Report
Online Estimation of DSGE Models
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, explore the benefits of an SMC variant we call generalized tempering for ?online? estimation, and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts of DSGE models with and without financial frictions and document the benefits of conditioning DSGE model forecasts on nowcasts ...