Search Results
Working Paper
Non-Stationary Dynamic Factor Models for Large Datasets
We study a Large-Dimensional Non-Stationary Dynamic Factor Model where (1) the factors Ft are I (1) and singular, that is Ft has dimension r and is driven by q dynamic shocks with q less than r, (2) the idiosyncratic components are either I (0) or I (1). Under these assumption the factors Ft are cointegrated and modeled by a singular Error Correction Model. We provide conditions for consistent estimation, as both the cross-sectional size n, and the time dimension T, go to infinity, of the factors, the loadings, the shocks, the ECM coefficients and therefore the Impulse Response Functions. ...
Working Paper
Dynamic Factor Models, Cointegration, and Error Correction Mechanisms
The paper studies Non-Stationary Dynamic Factor Models such that: (1) the factors Ft are I(1) and singular, i.e. Ft has dimension r and is driven by a q-dimensional white noise, the common shocks, with q < r, and (2) the idiosyncratic components are I(1). We show that Ft is driven by r-c permanent shocks, where c is the cointegration rank of Ft, and q - (r - c) < c transitory shocks, thus the same result as in the non-singular case for the permanent shocks but not for the transitory shocks. Our main result is obtained by combining the classic Granger Representation Theorem with recent ...
Working Paper
A dynamic factor analysis of the response of U. S. interest rates to news
This paper uses a dynamic factor model recently studied by Forni, Hallin, Lippi and Reichlin (2000) and Forni, Giannone, Lippi and Reichlin (2004) to analyze the response of 21 U.S. interest rates to news. Using daily data, we find that the news that affects interest rates daily can be summarized by two common factors. This finding is robust to both the sample period and time aggregation. Each rate has an important idiosyncratic component; however, the relative importance of the idiosyncratic component declines as the frequency of the observations is reduced, and nearly vanishes when rates ...