Search Results

SORT BY: PREVIOUS / NEXT
Author:Koop, Gary 

Working Paper
Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting

Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and "short" data imply a "ragged edge" at both the beginning and the end of regional data sets, ...
Working Papers , Paper 23-09

Report
Forecasting and estimating multiple change-point models with an unknown number of change points

This paper develops a new approach to change-point modeling that allows for an unknown number of change points in the observed sample. Our model assumes that regime durations have a Poisson distribution. The model approximately nests the two most common approaches: the time-varying parameter model with a change point every period and the change-point model with a small number of regimes. We focus on the construction of reasonable hierarchical priors both for regime durations and for the parameters that characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to ...
Staff Reports , Paper 196

Working Paper
A New Model of Inflation, Trend Inflation, and Long-Run Inflation Expectations

A knowledge of the level of trend inflation is key to many current policy decisions, and several methods of estimating trend inflation exist. This paper adds to the growing literature which uses survey-based long-run forecasts of inflation to estimate trend inflation. We develop a bivariate model of inflation and long-run forecasts of inflation which allows for the estimation of the link between trend inflation and the long-run forecast. Thus, our model allows for the possibilities that long-run forecasts taken from surveys can be equated with trend inflation, that the two are completely ...
Working Papers (Old Series) , Paper 1520

Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees

We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a novel nonparametric specification. Estimation is carried out using scalable Markov chain Monte Carlo estimation algorithms for each specification. We evaluate the real-time density and tail forecasting performance of the various models for a set of US macroeconomic and financial indicators. Our ...
Working Papers , Paper 21-08

Working Paper
Bayesian Modeling of Time-Varying Parameters Using Regression Trees

In light of widespread evidence of parameter instability in macroeconomic models, many time-varying parameter (TVP) models have been proposed. This paper proposes a nonparametric TVP-VAR model using Bayesian additive regression trees (BART). The novelty of this model stems from the fact that the law of motion driving the parameters is treated nonparametrically. This leads to great flexibility in the nature and extent of parameter change, both in the conditional mean and in the conditional variance. In contrast to other nonparametric and machine learning methods that are black box, inference ...
Working Papers , Paper 23-05

Working Paper
Predictive Density Combination Using a Tree-Based Synthesis Function

Bayesian predictive synthesis (BPS) provides a method for combining multiple predictive distributions based on agent/expert opinion analysis theory and encompasses a range of existing density forecast pooling methods. The key ingredient in BPS is a “synthesis” function. This is typically specified parametrically as a dynamic linear regression. In this paper, we develop a nonparametric treatment of the synthesis function using regression trees. We show the advantages of our tree-based approach in two macroeconomic forecasting applications. The first uses density forecasts for GDP growth ...
Working Papers , Paper 23-30

Report
Forecasting in large macroeconomic panels using Bayesian Model Averaging

This paper considers the problem of forecasting in large macroeconomic panels using Bayesian model averaging. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms that simulate from the space defined by all possible models. We explain how these simulation algorithms can also be used to select the model with the highest marginal likelihood (or highest value of an information criterion) in an efficient manner. We apply these methods to the problem of forecasting GDP and inflation using quarterly U.S. data on 162 time ...
Staff Reports , Paper 163

Report
Prior elicitation in multiple change-point models

This paper discusses Bayesian inference in change-point models. Current approaches place a possibly hierarchical prior over a known number of change points. We show how two popular priors have some potentially undesirable properties, such as allocating excessive prior weight to change points near the end of the sample. We discuss how these properties relate to imposing a fixed number of change points in the sample. In our study, we develop a hierarchical approach that allows some change points to occur out of the sample. We show that this prior has desirable properties and handles cases with ...
Staff Reports , Paper 197

Report
A flexible approach to parametric inference in nonlinear time series models

Many structural break and regime-switching models have been used with macroeconomic and financial data. In this paper, we develop an extremely flexible parametric model that accommodates virtually any of these specifications - and does so in a simple way that allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in different ways, we can accommodate a wide range of nonlinear time series models. By allowing the state equation variances to ...
Staff Reports , Paper 285

Report
Are apparent findings of nonlinearity due to structural instability in economic time series?

Many modeling issues and policy debates in macroeconomics depend on whether macroeconomic times series are best characterized as linear or nonlinear. If departures from linearity exist, it is important to know whether these are endogenously generated (as in, for example, a threshold autoregressive model) or whether they merely reflect changing structure over time. We advocate a Bayesian approach and show how such an approach can be implemented in practice. An empirical exercise involving several macroeconomic time series shows that apparent findings of threshold-type nonlinearities could be ...
Staff Reports , Paper 59

FILTER BY year

FILTER BY Series

FILTER BY Content Type

Working Paper 9 items

Report 6 items

FILTER BY Jel Classification

C32 9 items

C11 8 items

C53 7 items

E37 3 items

E32 2 items

C51 1 items

show more (4)

FILTER BY Keywords

PREVIOUS / NEXT