Search Results
Working Paper
The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility
We document the forecasting gains achieved by incorporating measures of signed, finite and infinite jumps in forecasting the volatility of equity prices, using high-frequency data from 2000 to 2016. We consider the SPY and 20 stocks that vary by sector, volume and degree of jump activity. We use extended HAR-RV models, and consider different frequencies (5, 60 and 300 seconds), forecast horizons (1, 5, 22 and 66 days) and the use of standard and robust-to-noise volatility and threshold bipower variation measures. Incorporating signed finite and infinite jumps generates significantly better ...
Working Paper
A Novel MIMIC-Style Model of European Bank Technical Efficiency and Productivity Growth
Using Bayesian Monte Carlo methods, we augment a stochastic distance function measure of bank efficiency and productivity growth with indicators of capitalization, return and risk. Our novel Multiple Indicator-Multiple Cause (MIMIC) style model generates more precise estimates of policy relevant parameters such as returns to scale, technical inefficiency and productivity growth. We find considerable variation in the performance of EU-15 banks over the period 2008 to 2015. For the vast majority of banks, productivity growth – the sum of efficiency and technical changes – is negative, ...
Working Paper
The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility
We propose a novel approach to decompose realized jump measures by type of activity (finite/infinite) and sign, and also provide noise-robust versions of the ABD jump test (Andersen et al., 2007b) and realized semivariance measures. We find that infinite (finite) jumps improve the forecasts at shorter (longer) horizons; but the contribution of signed jumps is limited. As expected, noise-robust measures deliver substantial forecast improvements at higher sampling frequencies, although standard volatility measures at the 300-second frequency generate the smallest MSPEs. Since no single model ...
Working Paper
The Contribution of Jump Activity and Sign to Forecasting Stock Price Volatility
This paper proposes a novel approach to decompose realized jump measures by type of activity (finite/infinite) and by sign. We also provide noise-robust versions of the ABD jump test (Andersen et al. 2007) and realized semivariance measures for use at high frequency sampling intervals. The volatility forecasting exercise involves the use of different types of jumps, forecast horizons, sampling frequencies, calendar and transaction time-based sampling schemes, as well as standard and noise-robust volatility measures. We find that infinite (finite) jumps improve the forecasts at shorter ...