Search Results

SORT BY: PREVIOUS / NEXT
Author:Huber, Florian 

Working Paper
BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R

This document introduces the R library BGVAR to estimate Bayesian global vector autoregressions (GVAR) with shrinkage priors and stochastic volatility. The Bayesian treatment of GVARs allows us to include large information sets by mitigating issues related to overfitting. This improves inference and often leads to better out-of-sample forecasts. Computational efficiency is achieved by using C++ to considerably speed up time-consuming functions. To maximize usability, the package includes numerous functions for carrying out structural inference and forecasting. These include generalized and ...
Globalization Institute Working Papers , Paper 395

Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees

We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a novel nonparametric specification. Estimation is carried out using scalable Markov chain Monte Carlo estimation algorithms for each specification. We evaluate the real-time density and tail forecasting performance of the various models for a set of US macroeconomic and financial indicators. Our ...
Working Papers , Paper 21-08

Working Paper
Forecasting US Inflation Using Bayesian Nonparametric Models

The relationship between inflation and predictors such as unemployment is potentially nonlinear with a strength that varies over time, and prediction errors error may be subject to large, asymmetric shocks. Inspired by these concerns, we develop a model for inflation forecasting that is nonparametric both in the conditional mean and in the error using Gaussian and Dirichlet processes, respectively. We discuss how both these features may be important in producing accurate forecasts of inflation. In a forecasting exercise involving CPI inflation, we find that our approach has substantial ...
Working Papers , Paper 22-05

Working Paper
Predictive Density Combination Using a Tree-Based Synthesis Function

Bayesian predictive synthesis (BPS) provides a method for combining multiple predictive distributions based on agent/expert opinion analysis theory and encompasses a range of existing density forecast pooling methods. The key ingredient in BPS is a “synthesis” function. This is typically specified parametrically as a dynamic linear regression. In this paper, we develop a nonparametric treatment of the synthesis function using regression trees. We show the advantages of our tree-based approach in two macroeconomic forecasting applications. The first uses density forecasts for GDP growth ...
Working Papers , Paper 23-30

Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees

We develop multivariate time series models using Bayesian additive regression trees that posit nonlinearities among macroeconomic variables, their lags, and possibly their lagged errors. The error variances can be stable, feature stochastic volatility, or follow a nonparametric specification. We evaluate density and tail forecast performance for a set of US macroeconomic and financial indicators. Our results suggest that the proposed models improve forecast accuracy both overall and in the tails. Another finding is that when allowing for nonlinearities in the conditional mean, ...
Working Papers , Paper 21-08R

Working Paper
Bayesian Modeling of Time-Varying Parameters Using Regression Trees

In light of widespread evidence of parameter instability in macroeconomic models, many time-varying parameter (TVP) models have been proposed. This paper proposes a nonparametric TVP-VAR model using Bayesian additive regression trees (BART). The novelty of this model stems from the fact that the law of motion driving the parameters is treated nonparametrically. This leads to great flexibility in the nature and extent of parameter change, both in the conditional mean and in the conditional variance. In contrast to other nonparametric and machine learning methods that are black box, inference ...
Working Papers , Paper 23-05

FILTER BY year

FILTER BY Content Type

FILTER BY Author

FILTER BY Jel Classification

C11 5 items

C32 5 items

C53 4 items

C30 1 items

C50 1 items

C51 1 items

show more (4)

PREVIOUS / NEXT