Search Results
Report
Predicting turning points
This paper presents a new method for predicting turning points. The paper formally defines a turning point; develops a probit model for estimating the probability of a turning point; and then examines both the in-sample and out-of-sample forecasting performance of the model. The model performs better than some other methods for predicting turning points.
Report
Using simulation methods for Bayesian econometric models: inference, development, and communication
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, ...
Report
Alternative computational approaches to inference in the multinomial probit model
This research compares several approaches to inference in the multinomial probit model, based on Monte-Carlo results for a seven choice model. The experiment compares the simulated maximum likelihood estimator using the GHK recursive probability simulator, the method of simulated moments estimator using the GHK recursive simulator and kernel-smoothed frequency simulators, and posterior means using a Gibbs sampling-data augmentation algorithm. Each estimator is applied in nine different models, which have from 1 to 40 free parameters. The performance of all estimators is found to be ...
Report
Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
Data augmentation and Gibbs sampling are two closely related, sampling-based approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accuracy of the approximations to the expected value of functions of interest under the posterior. In this paper methods for spectral analysis are used to evaluate numerical accuracy formally and construct diagnostics for convergence. These methods are illustrated in the normal linear model with ...
Report
Statistical inference in the multinomial multiperiod probit model
Statistical inference in multinomial multiperiod probit models has been hindered in the past by the high dimensional numerical integrations necessary to form the likelihood functions, posterior distributions, or moment conditions in these models. We describe three alternative approaches to inference that circumvent the integration problem: Bayesian inference using Gibbs sampling and data augmentation to compute posterior moments, simulated maximum likelihood (SML) estimation using the GHK recursive probability simulator, and method of simulated moment (MSM) estimation using the GHK simulator. ...
Report
Measuring the pricing error of the arbitrage pricing theory
This paper provides an exact Bayesian framework for analyzing the arbitrage pricing theory (APT). Based on the Gibbs sampler, we show how to obtain the exact posterior distributions for functions of interest in the factor model. In particular, we propose a measure of the APT pricing deviations and obtain its exact posterior distribution. Using monthly portfolio returns grouped by industry and market capitalization, we find that there is little improvement in reducing the pricing errors by including more factors beyond the first one.
Report
An empirical analysis of income dynamics among men in the PSID: 1968-1989
This study uses data from the Panel Survey of Income Dynamics (PSID) to address a number of questions about life cycle earnings mobility. It develops a dynamic reduced form model of earnings and marital status that is nonstationary over the life cycle. The study reaches several firm conclusions about life cycle earnings mobility. Incorporating non-Gaussian shocks makes it possible to account for transitions between low and higher earnings states, a heretofore unresolved problem. The non-Gaussian distribution substantially increases the lifetime return to post-secondary education, and ...
Report
Monte Carlo simulation and numerical integration
This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illustrates these procedures with applications to simulation and integration problems in economics.
Report
Mixture of normals probit models
This paper generalizes the normal probit model of dichotomous choice by introducing mixtures of normals distributions for the disturbance term. By mixing on both the mean and variance parameters and by increasing the number of distributions in the mixture these models effectively remove the normality assumption and are much closer to semiparametric models. When a Bayesian approach is taken, there is an exact finite-sample distribution theory for the choice probability conditional on the covariates. The paper uses artificial data to show how posterior odds ratios can discriminate between ...