Working Paper
Optimal prediction under asymmetric loss
Abstract: Prediction problems involving asymmetric loss functions arise routinely in many fields, yet the theory of optimal prediction under asymmetric loss is not well developed. We study the optimal prediction problem under general loss structures and characterize the optimal predictor. We compute it numerically in less tractable cases. A key theme is that the conditionally optimal forecast is biased under asymmetric loss and that the conditionally optimal amount of bias is time-varying in general and depends on higher-order conditional moments. Thus, for example, volatility dynamics (e.g., GARCH effects) are relevant for optimal point prediction under asymmetric loss. More generally, even for models with linear conditional-mean structure, the optimal point predictor is in general nonlinear under asymmetric loss, which provides a link with the broader nonlinear time series literature.
Keywords: Forecasting;
Access Documents
File(s): File format is application/pdf https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/1997/wp97-11.pdf
Bibliographic Information
Provider: Federal Reserve Bank of Philadelphia
Part of Series: Working Papers
Publication Date: 1997
Number: 97-11