Working Paper

Jump-diffusion term structure and Ito conditional moment generator


Abstract: This paper implements a Multivariate Weighted Nonlinear Least Square estimator for a class of jump-diffusion interest rate processes (hereafter MWNLS-JD), which also admit closed-form solutions to bond prices under a no-arbitrage argument. The instantaneous interest rate is modeled as a mixture of a square-root diffusion process and a Poisson jump process. One can derive analytically the first four conditional moments, which form the basis of the MWNLS-JD estimator. A diagnostic conditional moment test can also be constructed from the fitted moment conditions. The market prices of diffusion and jump risks are calibrated by minimizing the pricing errors between a model-implied yield curve and a target yield curve. The time series estimation of the short-term interest rate suggests that the jump augmentation is highly significant and that the pure diffusion process is strongly rejected. The cross-sectional evidence indicates that the jump-diffusion yield curves are both more flexible in reducing pricing errors and are more consistent with the Martingale pricing principle.

Keywords: Interest rates;

Access Documents

Authors

Bibliographic Information

Provider: Board of Governors of the Federal Reserve System (U.S.)

Part of Series: Finance and Economics Discussion Series

Publication Date: 2001

Number: 2001-28