Working Paper
Tractable latent state filtering for non-linear DSGE models using a second-order approximation
Abstract: This paper develops a novel approach for estimating latent state variables of Dynamic Stochastic General Equilibrium (DSGE) models that are solved using a second-order accurate approximation. I apply the Kalman filter to a state-space representation of the second-order solution based on the ?pruning? scheme of Kim, Kim, Schaumburg and Sims (2008). By contrast to particle filters, no stochastic simulations are needed for the filter here--the present method is thus much faster. In Monte Carlo experiments, the filter here generates more accurate estimates of latent state variables than the standard particle filter. The present filter is also more accurate than a conventional Kalman filter that treats the linearized model as the true data generating process. Due to its high speed, the filter presented here is suited for the estimation of model parameters; a quasi-maximum likelihood procedure can be used for that purpose.
JEL Classification: C63; C68; E37;
Access Documents
File(s):
File format is application/pdf
https://www.dallasfed.org/-/media/documents/research/international/wpapers/2013/0147.pdf
Description: Full text
Authors
Bibliographic Information
Provider: Federal Reserve Bank of Dallas
Part of Series: Globalization Institute Working Papers
Publication Date: 2013
Number: 147
Note: Published as: Kollmann, Robert (2015), "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning," Computational Economics 45 (2): 239-260.