Working Paper

Forecasts from Reduced-form Models under the Zero-Lower-Bound Constraint


Abstract: In this paper, I consider forecasting from a reduced-form VAR under the zero lower bound (ZLB) for the short-term nominal interest rate. I develop a method that a) computes the exact moments for the first n + 1 periods when n previous periods are tracked and b) approximates moments for the periods beyond n + 1 period using techniques for truncated normal distributions and approximations a la Kim (1994). I show that the algorithm produces satisfactory results for VAR systems with moderate to high persistence even when only one previous period is tracked. For very persistent VAR systems, however, tracking more periods is needed in order to obtain reliable approximations. I also show that the method is suitable for affine term-structure modeling, where the underlying state vector includes the short-term interest rate as in Taylor rules with inertia.

Keywords: monetary policy; forecasting from VARs; zero lower bound; normal mixtures;

JEL Classification: C53; E42; E43; E47;

https://doi.org/10.26509/frbc-wp-201512

Access Documents

File(s): https://doi.org/10.26509/frbc-wp-201512
Description: Persistent link

Authors

Bibliographic Information

Provider: Federal Reserve Bank of Cleveland

Part of Series: Working Papers (Old Series)

Publication Date: 2015-08-05

Number: 1512