Working Paper

Choosing the best volatility models: the model confidence set approach


Abstract: This paper applies the model confidence sets (MCS) procedure to a set of volatility models. A MSC is analogous to a confidence interval of parameter in the sense that the former contains the best forecasting model with a certain probability. The key to the MCS is that it acknowledges the limitations of the information in the data. The empirical exercise is based on fifty-five volatility models, and the MCS includes about a third of these when evaluated by mean square error, whereas the MCS contains only a VGARCH model when mean absolute deviation criterion is used. We conduct a simulation study that shows the MCS captures the superior models across a range of significance levels. When we benchmark the MCS relative to a Bonferroni bound, this bound delivers inferior performance.

Access Documents

Authors

Bibliographic Information

Provider: Federal Reserve Bank of Atlanta

Part of Series: FRB Atlanta Working Paper

Publication Date: 2003

Number: 2003-28