Search Results
Showing results 1 to 2 of approximately 2.
(refine search)
Working Paper
Tail Forecasting with Multivariate Bayesian Additive Regression Trees
We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a novel nonparametric specification. Estimation is carried out using scalable Markov chain Monte Carlo estimation algorithms for each specification. We evaluate the real-time density and tail forecasting performance of the various models for a set of US macroeconomic and financial indicators. Our ...
Report
Revisiting useful approaches to data-rich macroeconomic forecasting
This paper analyzes the properties of a number of data-rich methods that are widely used in macroeconomic forecasting, in particular principal components (PC) and Bayesian regressions, as well as a lesser-known alternative, partial least squares (PLS) regression. In the latter method, linear, orthogonal combinations of a large number of predictor variables are constructed such that the covariance between a target variable and these common components is maximized. Existing studies have focused on modelling the target variable as a function of a finite set of unobserved common factors that ...