Home About Latest Browse RSS Advanced Search

Board of Governors of the Federal Reserve System (US)
Finance and Economics Discussion Series
Nonparametric density estimation and tests of continuous time interest rate models
Matthew Pritsker
Abstract

Nonparametric kernel density estimation has recently been used to estimate and test short-term interest rate models, but inference has been based on asymptotics. We derive finite sample properties of kernel density estimates of the ergodic distribution of the short-rate when it follows a continuous time AR(1) as in Vasicek. We find that the asymptotic distribution substantially understates finite sample bias, variance, and correlation. Also, estimator quality and bandwidth choice depend strongly on the persistence of the interest rate process and on the span of the data, but not on sampling frequency. We also examine the size and power of one of Ait-Sahalia's nonparametric tests of continuous time interest rate models. The test rejects too often. This is probably because the quality of the nonparametric density estimate depends on persistence, but the asymptotic distribution of the test does not. After critical values are adjusted for size, the test has low power in distinguishing between the Vasicek and Cox-Ingersoll-Ross models relative to a conditional moment-based specification test.


Download Full text
Download Full text
Cite this item
Matthew Pritsker, Nonparametric density estimation and tests of continuous time interest rate models, Board of Governors of the Federal Reserve System (US), Finance and Economics Discussion Series 1997-26, 1997.
More from this series
JEL Classification:
Subject headings:
Keywords: Interest rates ; Time-series analysis
For corrections, contact FRB Librarian ()
Fed-in-Print is the central catalog of publications within the Federal Reserve System. It is managed and hosted by the Economic Research Division, Federal Reserve Bank of St. Louis.

Privacy Legal