Home About Latest Browse RSS Advanced Search

Federal Reserve Bank of Dallas
Globalization Institute Working Papers
The Taylor rule and forecast intervals for exchange rates
Jian Wang
Jason J. Wu
Abstract

This paper attacks the Meese-Rogoff (exchange rate disconnect) puzzle from a different perspective: out-of-sample interval forecasting. Most studies in the literature focus on point forecasts. In this paper, we apply Robust Semi-parametric (RS) interval forecasting to a group of Taylor rule models. Forecast intervals for twelve OECD exchange rates are generated and modified tests of Giacomini and White (2006) are conducted to compare the performance of Taylor rule models and the random walk. Our contribution is twofold.> ; First, we find that in general, Taylor rule models generate tighter forecast intervals than the random walk, given that their intervals cover out-of-sample exchange rate realizations equally well. This result is more pronounced at longer horizons. Our results suggest a connection between exchange rates and economic fundamentals: economic variables contain information useful in forecasting the distributions of exchange rates. The benchmark Taylor rule model is also found to perform better than the monetary and PPP models. Second, the inference framework proposed in this paper for forecast-interval evaluation can be applied in a broader context, such as inflation forecasting, not just to the models and interval forecasting methods used in this paper.


Download Full text
Cite this item
Jian Wang & Jason J. Wu, The Taylor rule and forecast intervals for exchange rates, Federal Reserve Bank of Dallas, Globalization Institute Working Papers 22, 2008.
More from this series
Note: Published as: Wang, Jian and Jason J. Wu (2012), "The Taylor Rule and Forecast Intervals for Exchange Rates," Journal of Money, Credit and Banking 44 (1): 103-144.
JEL Classification:
Subject headings:
For corrections, contact Amy Chapman ()
Fed-in-Print is the central catalog of publications within the Federal Reserve System. It is managed and hosted by the Economic Research Division, Federal Reserve Bank of St. Louis.

Privacy Legal